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Notations.

We use the standard (Bourbaki) notations:

N=1{0,1,2,...},

7. = ring of integers,

R = field of real numbers,

C = field of complex numbers,

F, = Z/pZ = field with p elementsp a prime number.

Given an equivalence relatiolx| denotes the equivalence class containing
Throughout the noteg,is a prime numberp = 2,3,5,7,11, .. ..
Let 7 and A be sets. A family of elements of indexed byI, denoted(a;);cs, is a
functioni — a;: I — A.
X CY X isasubseto¥ (not necessarily proper).
X2y Xisdefined to b&”, or equalsy” by definition.
X ~Y X isisomorphic toy.
X =Y X andY are canonically isomorphic (or there is a given or unique isomorphism).
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1 Basic definitions and results

Rings

A ring is a setR with two composition laws+ and- such that
(@) (R,+) is a commutative group;
(b) - is associative, and there exﬁ&m elemenir suchthatt - 1z = a = 1z - a for all
a € R;
(c) the distributative law holds: for all, b, c € R,

(a+b)-c=a-c+b-c
a-(b+c)=a-b+a-c.

We usually omit *” and write 1 for 1z when this causes no confusion. It is allowed that
1r =0, but thenR = {0}.

A subring S of a ring R is a subset that contairlg; and is closed under addition,
passage to the negative, and multiplication. It inherits the structure of a ring from that on
R.

A homomorphism of ringsy: R — R’ is a map with the properties

ala+b) =aa) +alb), olab) =ala)a(b), «a(lg)=1g, alla,beR.
Aring R is said to becommutativelf multiplication is commutative:
ab=baforalla,b € R.

A commutative ring is said to be antegral domainif 1z # 0 and the cancellation law
holds for multiplication:
ab = ac, a # 0, impliesb = c.

An ideal I in a commutative ring? is a subgroup of R, +) that is closed under multipli-
cation by elements ak:
r € R,a € I,impliesra € I.

We assume that the reader has some familiarity with the elementary theory of rings. For
example, inZ (more generally, any Euclidean domain) an idéak generated by any
“smallest” nonzero element gt

Fields

DEFINITION 1.1. Afieldis a setF’ with two composition laws- and- such that
(@) (F,+) is a commutative group;
(b) (F*,-), whereF* = F' ~\ {0}, is a commutative group;
(c) the distributive law holds.

1We follow Bourbaki in requiring that rings havelawhich entails that we require homomorphisms to
preserve it.
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Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse.
In particular, it is an integral domain. A field contains at least two distinct elemeatsg
1. The smallest, and one of the most important, fields,is- Z/27Z = {0, 1}.

A subfield S of a field F' is a subring that is closed under passage to the inverse. It
inherits the structure of a field from that én

LEMMA 1.2. A commutative ring? is a field if and only if it has no ideals other th&f)
andR.

PROOF. Supposer is a field, and let’ be a nonzero ideal i®. If a is a nonzero element
of I, thenl = a~'a € I, and sol = R. Conversely, supposk is a commutative ring with
no nontrivial ideals. Iz # 0, then(a) = R, and so there is &in F such thatb =1. O

EXAMPLE 1.3. The following are fields®, R, C, F, = Z/pZ (p prime).

A homomorphism of fieldsyv: FF — F’ is simply a homomorphism of rings. Such a
homomorphism is always injective, because the kernel is a proper ideal (it doesn’t contain
1), which must therefore be zero.

The characteristic of a field

One checks easily that the map
Z—>F, n—lp+1lp+---+1p (ncopies,

is a homomorphism of rings, and so its kernel is an idedl.in
Case 1:The kernel of the map i), so that

n-lp=0 = n=0(in2Z).

Nonzero integers map to invertible elementdofindern — n - 1p: Z — F, and so this
map extends to a homomorphism

% — (m-1p)(n-1p)"": Q= F.
Thus, in this casel’ contains a copy of), and we say that it hasharacteristic zero
Case 2:The kernel of the map ig (0), so that:- 1 = 0 for somen # 0. The smallest
positive such will be a primep (otherwise there will be two nonzero elementginvhose
product is zero), angd generates the kernel. Thus, the map> n - 1r: Z — F defines an
isomorphism fron¥ /pZ onto the subring

{m-1p | m € Z}

of F'. In this caseF’ contains a copy df,, and we say that it hasharacteristicp.
The fieldsF,, 3, F5, ..., Q are called theprime fields. Every field contains a copy of
exactly one of them.
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REMARK 1.4. The binomial theorem
(a+b)" =am+ (T)a™ b+ (T)a™ b + -+ V"

holds in any commutative ring. {fis prime, therp| (fj) forallr,1 <r < p-—1. Therefore,
when F' has characteristig,
(a+b)P =al +bP.

Hencea — a” is a homomorphisn¥ — F', called theFrobenius endomorphisnof F.
When £ is finite, it is an isomorphism, called tl&obenius automorphism

Review of polynomial rings

For the following, see Dummit and Foote 1991, Chapter 9.A_ée a field.

1.5. We letF'[X] denote the polynomial ring in the indeterminatewith coefficients in
F. Thus, F[X] is a commutative ring containing as a subring whose elements can be
written uniquely in the form

A X™ + Q1 X™ P+ 4 ag, a; € F,m €N,

For a ringR containingF' as a subring and an elemendf R, there is a unigue homomor-
phisma: F[X]| — R such thatv(X) = r anda(a) = aforalla € F.

1.6. Division algorithm: given f(X) andg(X) € F[X] with g # 0, there existy(X),
r(X) € F[X] with deg(r) < deg(g) such that
f=9q+r7;

moreoverg(X) andr(X) are uniquely determined. Thig.X | is a Euclidean domain with
deg as norm, and so is a unique factorization domain.

1.7. From the division algorithm, it follows that an elemeraf ' is a root of f (that is,
f(a) = 0)ifand only if X — a divides f. From unique factorization, it now follows thgt
has at mostleg( f) roots (see also Exercise 3).

1.8. Euclid’s algorithm: Let f andg € F[X] have gcdi(X). Euclid’s algorithm constructs
polynomialsa(X') andb(X) such that
a(X) - f(X) +b(X) - g(X) =d(X), deg(a) <deg(g), deg(b) < deg(f).

Recall how it goes. We may assuriez(f) > deg(g) since the argument is the same in
the opposite case. Using the division algorithm, we construct a sequence of quotients and
remainders

f=qg+ro
g=qro+ "

o = @271 + T2

Th—2 = qnln—1 1+ Tn

'n—1 = Qn4+1Tn
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with r,, the last nonzero remainder. Then,dividesr,,_;, hencer,,_,,..., hencey, and
hencef. Moreover,

Tn =Tn—2 — QGnT'n—1 = Tpn—2 — Qn(rn—fﬂ - Qn—lrn—Z) == a’f + b.g

and so any common divisor gfandg dividesr,: we have showm, = ged(f, g).
Letaf + bg = d. If deg(a) > deg(g), write a = gq + r with deg(r) < deg(g); then

rf+(b+qf)g=d,

andb + ¢ f automatically has degree deg( f).
Maple knows Euclid’s algorithm — to learn its syntax, type “?gcdex;”.

1.9. Let] be a nonzero ideal if'[X], and letf be a nonzero polynomial of least degree in
I; then! = (f) (becausé’[X] is a Euclidean domain). When we chogéé be monic,
i.e., to have leading coefficient one, it is uniquely determined.byhus, there is a one-
to-one correspondence between the nonzero ided$.%f and the monic polynomials in
F[X]. The prime ideals correspond to the irreducible monic polynomials.

1.10. Sincel’[X] is an integral domain, we can form its field of fractioR$X). Its ele-
ments are quotients/g, f andg polynomials,g # 0.

Factoring polynomials

The following results help in deciding whether a polynomial is irreducible, and, when it is
not, in finding its factors.

PROPOSITION1.11. Suppose € Q is a root of a polynomial
A X™ + Oy X" 4 b ag, a; €7,
and letr = ¢/d, ¢,d € Z, ged(c, d) = 1. Thenc|ay andd|a,,.
PROOF. ltis clear from the equation
€™ + A1 ¢ H -+ agd™ =0
thatd|a,,,c™, and therefored|a,,. Similarly, c|ay. O

ExXAMPLE 1.12. The polynomiaf(X) = X? — 3X — 1 isirreducible inQ[X] because its
only possible roots ar¢-1, andf(1) # 0 # f(—1).

PROPOSITION1.13 (GAUSS' SLEMMA). Let f(X) € Z[X]. If f(X) factors nontrivially
in Q[X], then it factors nontrivially irZ[ X].

PROOF. Let f = gh in Q[X]. For suitable integers: andn, g, =¢ mg andh; =g nh
have coefficients itZ, and so we have a factorization

mnf = g - hy in Z[X].



1 BASIC DEFINITIONS AND RESULTS 8

If a primep dividesmn, then, looking modulg, we obtain an equation
0=g1-h InF,[X].

SincelF,[X] is an integral domain, this implies thatdivides all the coefficients of at least
one of the polynomialg,, h,, sayg;, so thaty; = pg, for someg, € Z[X]. Thus, we have
a factorization

(mn/p)f = g2+ ha In Z[X].
Continuing in this fashion, we can remove all the prime factorsnaf and so obtain a
factorization off in Z[X]. O

PrRoOPOSITION1.14.1f f € Z[X] is monic, then any monic factor @fin Q[.X] liesinZ[X].

PROOF. Let g be a monic factor of in Q[X], so thatf = gh with h € Q[X] also monic.
Letm, n be the positive integers with the fewest prime factors suchitlyat. f € Z[X]. As
in the proof of Gauss’s Lemma, if a prinpadividesmn, then it divides all the coefficients
of at least one of the polynomialsg, nh, saymg, in which case it divides: because is
monic. Now®g € Z[X], which contradicts the definition of.. O

REMARK 1.15. We sketch an alternative proof of Proposifion [L.14. A complex number
a is said to be aralgebraic integerif it is a root of a monic polynomial irZ|X]. The
algebraic integers form a subring@©f— for an elementary proof of this, using nothing but
the symmetric polynomials theorem (5.30), see ANT, Theorem 2.2. Naw Jet. , «,,, be
the roots off in C. By definition, they are algebraic integers. The coefficients of any monic
factor of f are polynomials in (certain of) the;, and therefore are algebraic integers. If
they lie inQ, then they lie inZ, because Propositign 1]11 shows that any algebraic integer
iNQisinZ.
PROPOSITION1.16 (ESENSTEIN' S CRITERION). Let

f=anX™ 4+ apn X"V Fay, a; €7

suppose that there is a primesuch that:
— p does not divide,,,,
— pdividesa,,_1, ..., ag,
— p? does not divide.

Thenf is irreducible inQ[X].

PROOF If f(X) factors inQ[X], it factors inZ[X]:
CLme—i-am,le_l +--tay = (brXT+"'+bo)(CSXS+"'+CO)

b;,c; € Z,r,s < m. Sincep, but notp?, dividesaq = bycy, p must divide exactly one df,
o, Say,bp. Now from the equation

a; = bocy + bicy,
we see thap|b;, and from the equation
a9 = boCQ + blcl + bgCO,

thatp|b,. By continuing in this way, we find thatdividesby, b1, . . ., b, which contradicts
the fact thap does not dividex,,,. O
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The last three propositions hold withreplaced by any unique factorization domain.

REMARK 1.17. There is an algorithm for factoring a polynomial@j.X]. To see this,
considerf € Q[X]. Multiply f(X) by a rational number so that it is monic, and then
replace it bdeeg(f)f(%), with D equal to a common denominator for the coefficients of
f, to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

fX)=X"+a X" '+ +a, a€Z.

From the fundamental theorem of algebra 5.6), we knowfthplits completely
in C[X]:
fX) =]][X —a), a€C.
=1
From the equation
0=fl) =a+aa ' 4+ an,

it follows that |«;| is less than some bound depending only on the degree and coefficients
of f;in fact,
la;| < max{1,mB}, B = max|a.

Now if ¢(X) is a monic factor off (X), then its roots inC are certain of they;, and its
coefficients are symmetric polynomials in its roots. Therefore, the absolute values of the
coefficients ofg(X') are bounded in terms of the degree and coefficients @ince they
are also integers (Hy 1.]14), we see that there are only finitely many possibilitiggXfor
Thus, to find the factors of (X)) we (better Maple) have to do only a finite amount of
checking.
Thus, we need not concern ourselves with the problem of factoring polynomials in
Q[X] or F,[X], since Maple knows how to do it. For example
>factor(6*X"2+18*X-24) ; will find the factors of6 X2 4 18X — 24, and
>Factor(X"2+3*X+3) mod 7 ; will find the factors ofX? 4 3X + 3 modulo?7,
i.e., inF;[X].

REMARK 1.18. One other observation is useful. lfee Z[X]. If the leading coefficient
of f is not divisible by a prime), then a nontrivial factorizatiofi = gh in Z[X] will give
a nontrivial factorizatiorf = gh in F,[X]. Thus, if f(X) is irreducible inF,[X] for some
prime p not dividing its leading coefficient, then it is irreducibleZiiX]. This test is very
useful, but it is not always effective: for examplg;! — 10X? + 1 is irreducible inZ[X]
but itis reducibl% modulo every primey.

2In an earlier version of these notes, | said that | didn’t know an elementary proof of this, but several
correspondents sent me such proofs, the simplest of which is the following. It uses only that the product of
two nonsquares i’ is a square, which follows from the fact tha} is cyclic (see Exercise 3). fis a
square irif,, then
X —10X% +1=(X?-2V2X - 1)(X? +2V2X - 1).

If 3 is a square iff,, then
X4 —10X2 +1=(X? - 2V3X +1)(X% +2V3X +1).

If neither2 nor 3 are squared will be a square irF¥,, and
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Extension fields

A field E containing a fieldF' is called anextension fieldof F' (or simply anextension
of F'). Such anF can be regarded in an obvious fashion ag-avector space. We write
[E : F| for the dimension, possibly infinite, df as anF’-vector space, and cdlt’ : F]the
degreeof E over F. We often say thak is finite over F when it has finite degree ovét

ExamMpPLE 1.19. (a) The field of complex numbetshas degree overR (basis{1,}).

(b) The field of real number® has infinite degree ovép) — becausd) is countable,
every finite-dimension&)-vector space is also countable, but a famous argument of Cantor
shows thatR is not countable. More explicitly, there are specific real numleror
example;r, whose powers, o, o2, . . . are linearly independent ovér (see the subsection
on transcendental numbefs p15).

(c) The field ofGaussian numbers

Q@) L {a+bieC|abeQ}

has degree overQ (basis{1,}).
(d) The field F(X) has infinite degree ovef’; in fact, even its subspack|X| has
infinite dimension ovef (basisl, X, X?2,..)).

PROPOSITIONL1.20. Let L D F D F (all fields and subfields). Thety F' is of finite degree
if and only if L/ E and E/ F are both of finite degree, in which case
[L:F|=I[L:E|FE:F]

PROOF. If L is of finite degree oveF’, then it is certainly of finite degree ovér. More-

over, I/, being a subspace of a finite dimensiohaspace, is also finite dimensional.
Thus, assume thdt/ E andE/ F are of finite degree, and 1ét;)<;<,, be a basis foF/

as anf’-vector space and I¢t;),<,<,, be a basis fol as anE-vector space. To complete

I B R

will be finite over F’ of the predicted degree.
First, (e;(;); ; spansL. Lety € L. Then, becausf;), spansL as ank-vector space,

v =295, someq; € F,
and becausé:;); spansE as anF’-vector space,

Q= Ziaijei, sOMmea;; < F.

X*—10X%+1= (X%~ (5+2V6))(X? — (5 - 2V6)).

The general study of such polynomials requires nonelementary methods. See, for example, the paper
Brandl, Rolf, Integer polynomials that are reducible modulo all primes, Amer. Math. Mor&BI{ 986),
pp286-288,
which proves that every nonprime integer> 1 occurs as the degree of a polynomialAfX] that is
irreducible ovelZ but reducible modulo all primes
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On putting these together, we find that

V= 2itiseil;.

Second,(e;l;); ; is linearly independent. A linear relation’ a;;e;l; = 0, a;; € F,
can be rewritterd . (>, a;je;)l; = 0. The linear independence of tiigs now shows
that > . a;;e; = 0 for eachy, and the linear independence of thés shows that each
Q5 = 0. O

Construction of some extension fields

Let f(X) € F[X] be a monic polynomial of degree, and let(f) be the ideal gener-
ated byf. Consider the quotient ring'[X|/(f(X)), and writex for the image ofX in
FIX]/(f(X)),i.e.,xis the coseX + (f(X)). Then:
(a) The map
P(X) — P(z): F[X] — Flz]

is a surjective homomorphism in whight{ X') maps td). Thereforef(z) = 0.

(b) From the division algorithm, we know that each elememf F'[X]/(f) is rep-
resented by a unique polynomialof degree< m. Hence each element &f[z| can be
expressed uniquely as a sum

ag+amx + 4 amo ™, a; € F. *)

(c) To add two elements, expressed in the form (*), simply add the corresponding coef-
ficients.

(d) To multiply two elements expressed in the form (*), multiply in the usual way, and
use the relatiorf (x) = 0 to express the monomials of degreemn in x in terms of lower
degree monomials.

(e) Now assumg(X) is irreducible. To find the inverse of an elemeng& F[z], write
a in the form (*), i.e., setv = g(x) whereg(X) is a polynomial of degree m — 1, and
use Euclid’s algorithm irF"| X | to obtain polynomials(X') andb(X) such that

a(X)f(X) +b(X)g(X) = d(X)

with d(X) the gcd of f andg. In our cased(X) is 1 because'(X) is irreducible and
deg g(X) < deg f(X). When we replac& with z, the equality becomes

b(x)g(z) = 1.

Henceb(z) is the inverse of(x).
From these observations, we can conclude:

1.21. For a monic irreducible polynomiaf (X ) of degreem in F'[X],

is a field of degreen over F. Moreover, computations ifi[z| reduce to computations in
F.
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EXAMPLE 1.22. Letf(X) = X? + 1 € R[X]. ThenR[z] has:
elementsu + bz, a,b € R;
addition: (a + bx) + (¢’ + b'z) = (a + d') + (b+ V') z;
multiplication: (a + bz)(a’ + b'z) = (aa’ — bb') + (ab’ + a'b)x.
We usually write; for x andC for R[z].

EXAMPLE 1.23. Letf(X) = X* — 3X — 1 € Q[X]. We observed in (1.12) that this is
irreducible overQ, and saQ|[z] is a field. It has basiél, =, 2%} as aQ-vector space. Let

B =x*+22° 4+ 3 € Q[z].

Then using thai® — 3z — 1 = 0, we find thats = 322 + 7z + 5. BecauseX® — 3X — 1is
irreducible,
ged(X? —3X —1,3X? +7X +5) = 1.

In fact, Euclid’s algorithm (courtesy of Maple) gives

(X3 =3X —1)(FX+ )+ BX*+TX +5) ({5 X*— 22X + B)=1.

111

Hence

(322 + Tx + 5)(%x2 — %x + %) =1,

and we have found the inverse ©f

The subring generated by a subset

An intersection of subrings of a ring is again a ring. E&be a subfield of a field’, and let
S be asubset af’. The intersection of all the subrings BfcontainingF” andsS is evidently
the smallest subring aF containingF andS. We call it the subring o generated by
F and S (or generated ovel by S), and we denote if'[S]. WhenS = {ay, ..., o, }, we

write Flay, ..., ay,] for F[S]. For exampleC = R[y/—1].

LEMMA 1.24. The ring F'[S] consists of the elements ffthat can be written as finite
sums of the form

Z ail...inazf tee Oé;", iy ey € F, o, € S. (*)
PROOF. Let R be the set of all such elements. Evidenflyis a subring containing’ and
S and contained in any other such subring. TherefoexualsF'[S]. O

ExampLE 1.25. The ringQ[r], 7 = 3.14159..., consists of the complex numbers that can
be expressed as a finite sum

ap + a1 + aom® + - a,m,  a; € Q.

The ringQ[é] consists of the complex numbers of the foim bi, a,b € Q.
Note that the expression of an element in the form (*) wok be unique in general.
This is so already ifR[i].

LEMMA 1.26. Let R be an integral domain containing a subfigtti(as a subring). IfR is
finite dimensional when regarded as &Rvector space, then it is a field.
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PROOF. Let «a be a nonzero element & — we have to show that has an inverse itk.
The mapr — ax: R — Ris aninjective linear map of finite dimension@vector spaces,
and is therefore surjective. In particular, there is an elementk such thatg =1. [

Note that the lemma applies to subrings (containif)@f an extension fieldr of F' of
finite degree.

The subfield generated by a subset

An intersection of subfields of a field is again a field. Lfetbe a subfield of a field”,
and letS be a subset off. The intersection of all the subfields éf containingF’ and S
is evidently the smallest subfield & containingF andS. We call it the subfield of&
generated by and S (or generated ovef”’ by S), and we denote if'(S). Itis the field
of fractions of F'[S] in E, since this is a subfield of’ containingF/ and S and contained
in any other such field. Whefi = {ay, ..., «,, }, we write F(ay, ..., a,) for F(S). Thus,
Flay,...,a,) consists of all elements of that can be expressed as polynomials in the
«; with coefficients inF, and F(a, ..., q,) consists of all elements of that can be
expressed as the quotient of two such polynomials.

Lemma[1.2b shows thaf[S] is already a field if it is finite dimensional ovef, in
which caseF'(S) = F[S].

ExAMPLE 1.27. The fieldQ(n), 7 = 3.14. .. consists of the complex numbers that can be
expressed as a quotient

g(m)/h(x), g(X),h(X) € QIX], h(X)#0.

The ringQ[¢] is already a field.

An extensionE of F'is said to besimpleif £ = F(«) somea € E. For example,
Q(7) andQ[:| are simple extensions @&J.

Let F'andF’ be subfields of a fiel&. The intersection of the subfields &fcontaining
F andF’ is evidently the smallest subfield &f containing both#” and £”. We call it the
compositeof F andF” in E, and we denote i’ - F’. It can also be described as the subfield
of £ generated oveF' by F”, or the subfield generated ovEf by F:

F(F)=F F =F(F).

Algebraic and transcendental elements

For a fieldF" and an element of an extension field, we have a homomorphism

There are two possibilities.
Case 1:The kernel of the map i), so that, forf € F[X],

fl@)=0 = f=0/(n F[X).
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In this case, we say that transcendental over". The homomorphisn#’[X] — F[a] is
an isomorphism, and it extends to an isomorphisfX') — F(«).

Case 2:The kernel is# (0), so thaty(«) = 0 for some nonzerg € F[X]. In this case,
we say thaty is algebraic overF'. The polynomialg; such thay(«) = 0 form a nonzero
ideal in F[.X ], which is generated by the monic polynomjadf least degree sucf(«) = 0.
We call f theminimum polynomialof « over F. It is irreducible, because otherwise there
would be two nonzero elements Bfwhose product is zero. The minimum polynomial is
characterized as an element/ofX | by each of the following sets of conditions:

f is monic; f(«) = 0 and divides every other polynomiaiin F[X] with g(a) = 0.

f is the monic polynomial of least degree sutflar) = 0;

f is monic, irreducible, and(a) = 0.

Note thatg(X) — ¢(«) defines an isomorphisth[X|/(f) — F[a]. Since the firstis a
field, so also is the second:
F(a) = Flal.

Moreover, each element éf[a] has a unique expression

ap + aro + ad® + -+ app_1a™ L, a; € F,
wherem = deg(f). In other words,1,a,...,a™ ! is a basis forF'[a] over F. Hence
[F(«) : F] = m. SinceF[x] & Fl[a], arithmetic inF'[a] can be performed using the same
rules as inF'[z].

EXAMPLE 1.28. Leta € C be such that® — 3a — 1 = 0. ThenX? — 3X — 1 is monic,
irreducible, and has as a root, and so it is the minimum polynomialobver@. The set
{1,a,a*} is a basis forQ[a] over Q. The calculations in Exampje 1]23 show thagifs

the element* + 203 + 3 of Q[a], thens = 3a2 + Ta + 5, and

i 7.2 2., 28
67 = o @t

REMARK 1.29. Maple knows how to compute @[«]. For example,
factor(X"4+4); returns the factorization

(X2 —2X +2)(X? +2X +2).

Now type:alias(c=RootOf(X"2+2*X+2)); . Then
factor(X"4+4,c); returns the factorization

(X4+)(X=2—-c)(X+2+)(X —0),

i.e., Maple has factore®d* + 4 in Q[c] wherec has minimum polynomiak? + 2X + 2.

A field extension£/ F' is said to bealgebraig or F is said to bealgebraic overF, if all
elements of~’ are algebraic oveF’; otherwise it is said to b#anscendentalor F is said
to betranscendental ovef'). Thus,E/F is transcendental if at least one elementiof
transcendental over.

PrROPOSITION1.30. A field extensiot / F' is finite if and only if£ is algebraic and finitely
generated (as a field) ovér.
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PROOF. —: To say thatx is transcendental ove’ amounts to saying that its powers
1,a,0?, ... are linearly independent ovér. Therefore, ifE is finite over F, then it is
algebraic ovelF'. It remains to show that is finitely generated oveF'. If £ = F, then it

is generated by the empty set. Otherwise, there exists anF ~ F. If E # F[a4], there
exists amy, € E \ F[ay], and so on. Since

[Flou]: F] < [Flag,aq) : F] < --- < [E: F]

this process terminates.

<—: Let E = F(ay,...,a,) With aq, s, ..., algebraic overF’. The extension
F(ay)/F is finite becausey; is algebraic ovel’, and the extensiol'(ay, as)/F(aq) IS
finite because, is algebraic ovef” and hence oveF(«;). Thus, by )F(Oq, ap) IS
finite over F'. Now repeat the argument. ]

COROLLARY 1.31. (a) If E is algebraic overF’, then any subringz of £ containingF’ is
a field.

(b) Ifin L D E D F, L is algebraic overE and E' is algebraic overF', then L is
algebraic overF.

PROOF. (a) We observed above, thatifis algebraic oveF’, thenF'[a] is a field. Ifa € R,
thenF'[a] C R, and sox has an inverse if.

(b) Any a € L is a root of some monic polynomigl= X" +a,,  X™ '+ +ag €
E[X]. Now each of the extensiorS[ao, ..., amn-1,a] D Flag,...,an—1] D Fis finite,
and sof'[ay, . . ., a1, @] is finite (hence algebraic) ovér. O

Transcendental numbers

A complex number is said to kegebraicor transcendentabhccording as it is algebraic or
transcendental ovép. First some history:

1844: Liouville showed that certain numbers, now called Liouville numbers, are tran-
scendental.

1873: Hermite showed thatis transcendental.

1874: Cantor showed that the set of algebraic numbers is countable, b ithabt
countable. Thus almost all numbers are transcendental (but it is usually very difficult to
prove that any particular number is transcendeﬁ}al).

1882: Lindemann showed thatis transcendental.

1934: Gel'fond and Schneider independently showeddHas transcendental if and
(3 are algebraicy # 0,1, andg ¢ Q. (This was the seventh of Hilbert’s famous problems.)

1994: Euler’s constant

v = lim (Z 1/k —logn)

k=1

3In 1873 Cantor proved the rational numbers countable. ... He also showed that the algebraic numbers. ..
were countable. However his attempts to decide whether the real numbers were countable proved harder. He
had proved that the real numbers were not countable by December 1873 and published this in a paperin 1874
(http://Iwww-gap.dcs.st-and.ac.uk/"history/Mathematicians/Cantor.html ).


http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html
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has not yet been proven to be transcendental.
1994: The numbers + 7 ande — 7 are surely transcendental, but they have not even
been proved to be irrational!

PrROPOSITION1.32. The set of algebraic numbers is countable.

PROOF. Define the height(r) of a rational number to bewax(|m|, |n|), wherer = m/n
is the expression of in its lowest terms. There are only finitely many rational numbers
with height less than a fixed numbaf. Let A(/V) be the set of algebraic numbers whose
minimum equation ove@ has degre&. N and has coefficients of height N. ThenA(N)
is finite for each/V. Count the elements of(10); then count the elements df(100); then
count the elements of(1000), and so offf N

oo 1

A typical Liouville number isy " | 5= — in its decimal expansion there are increas-
ingly long strings of zeros. We prove that the analogue of this number inJestan-
scendental.

THEOREM1.33. The numbery = )" - is transcendental.

PROOF. PlSuppose not, and let
fX)=X"+a, X'+ 4ag, a €Q,

be the minimum polynomial af overQ. Thus|Q|«] : Q] = d. Choose a nonzero integer
D suchthatD - f(X) € Z[X].

Let Sy = >0, o, S0 thatSy — a asN — oo, and letzy = f(Zy). If ais
rationalf] f(X) = X —a; otherwise f(X), being irreducible of degree 1, has no rational
root. SinceXy # a, it can't be a root off (X ), and sar # 0. Evidently,zy € Q; in fact
(2MYeDay € Z, and so

|(2¥)*Day] > 1. *)

From the fundamental theorem of algebra 5.6 below), we knowf thplits in

C[X]’ Sa'yl
d

FXO)=]]X-a), weC, a=a,

i=1
and so
d
x| =[] 15x — il < |Sy — ea| (S + M)*!, whereM = mgX{L ||}

i=1

But

oo

1 1 1 2
Xy —aq] = Z ot < SN+ (Z Q_n) I TRESE

n=N+1 n=0

“More precisely, choose a bijection from some segnfient(1)] of N onto A(10); extend it to a bijection
from a segmenj0, n(2)] onto A(100), and so on.

5This proof, which | learnt from David Masser, also works @a% for any intege > 2.

6In fact « is not rational because its expansion to bagenot periodic.
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Hence
lzy| < S (Sn + M)+
and e
|(2N!)dDIN| S 2. W . (ZN + M)d_l

. 1 N! . -
which tends t@) asN — co becausgZy; = (2]3‘11) — 0. This contradicts (*). O

Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were surprised to find
that the length of the diagonal of a square of sigdeamely, /2, is not rational. They

thus realized that they needed to extend their number system. They then hoped that the
“constructible” numbers would suffice. Suppose we are given a length, which wg, call

a straight-edge, and a compass (device for drawing circles). A number (better a length) is
constructibleif it can be constructed by forming successive intersections of

— lines drawn through two points already constructed, and

— circles with centre a point already constructed and radius a constructed length.

This led them to three famous questions that they were unable to answer: is it possible
to duplicate the cube, trisect an angle, or square the circle by straight-edge and compass
constructions? We'll see that the answer to all three is negative.

Let F" be a subfield oR. For a positivex € F, \/a denotes the positive square root of
ainR. TheF-plane isF' x F' C R x R. We make the following definitions:

A line in the F-plane is a line through two points in tliéplane. Such a line
is given by an equation:

ar+by+c=0, a,bcekF.

A circle in the F-plane is a circle with centre afi-point and radius an element
of F. Such a circle is given by an equation:

(x—a)’+(y—b*=c abcelF

LEMMA 1.34. Let L # L' be F-lines, and letl”' # C’ be F-circles.
(@) LN L' = or consists of a singlé™-point.
(b) LN C = 0 or consists of one or two points in thé&,/e]-plane, some € F.
(c) C N’ = or consists of one or two points in th&/e]-plane, some € F.

PrROOF. The points in the intersection are found by solving the simultaneous equations,
and hence by solving (at worst) a quadratic equation with coefficierts in O

LEMMA 1.35. (a) If candd are constructible, then so also are-d, —c, cd, and§ (d # 0).
(b) If ¢ > 0 is constructible, then so also igc.
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PROOF (SKETCH). Firstshow thatitis possible to construct a line perpendicular to a given
line through a given point, and then a line parallel to a given line through a given point.
Hence itis possible to construct a triangle similar to a given one on a side with given length.
By an astute choice of the triangles, one construétandc—t. For (b), draw a circle of
radius <t! and centrg(<t!,0), and draw a vertical line through the poidt= (1,0) to

meet the circle aP. The lengthAP is /c. (For more details, see Rotman 1990, Appendix
3) O

THEOREM1.36. (@) The set of constructible numbers is a field.
(b) A numbera is constructible if and only if it is contained in a field of the form

Qlva,...,va.], a €Qay,...,ai1]

PROOF. (a) Immediate from (a) of Lemma 1]35.

(b) From (a) we know that the set of constructible numbers is a field contaipiagd
it follows from (a) and Lemmia 1.35 that every numbe®ify/as, . . . , \/a,] is constructible.
Conversely, it follows from Lemma 1.B4 that every constructible number is in a field of the

formQ[/a1, ..., /a.]. ]

COROLLARY 1.37. If a is constructible, them is algebraic overQ, and [Q[«] : Q] is a
power of2.

PROOF. According to Propositioh 1.20Q[c] : Q] divides[Q[,/as, ..., /a,] : Q] and
[Q[\/a1, .- .,+/a,] : Q] is a power ob. 0

COROLLARY 1.38. It is impossible to duplicate the cube by straight-edge and compass
constructions.

PROOF. The problem is to construct a cube with volumeThis requires constructing a
root of the polynomialX® — 2. But this polynomial is irreducible (by Eisenstein’s criterion

for example), and §@[+/2] : Q] = 3. O

COROLLARY 1.39. In general, it is impossible to trisect an angle by straight-edge and
compass constructions.

PROOF. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore, to
trisect3«a, we have to construct a solution to

cos 3a = 4 cos® a — 3 cos a.

For example, tak8a = 60 degrees. To construat, we have to solv8z? — 6z — 1 = 0,
which is irreducible (apply 1.11). O

COROLLARY 1.40. It is impossible to square the circle by straight-edge and compass con-
structions.

PROOF. A square with the same area as a circle of radidss side,/7r. Sincer is
transcendenfglso also is,/7. O

"Proofs of this can be found in many books on number theory, for example, in 11.14 of
Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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We now consider another famous old problem, that of constructing a regular polygon.

Note thatX™ — 1 is not irreducible; in fact

X" —1=(X-D(X™ 4 X" 24 1),

LEMMA 1.41. If pis prime thenX?~! + ... + 1 is irreducible; henceéQ[e>"/?] has degree

p — 1 overQ.

PROOF. Setf(X)= XP"!'+...+1,sothat

(X +1)p—1

% =X ap X+ a X +p,

f(X+1)=

witha; = (,*,). Nowpla, fori =1,...,p—2, and sof (X +1) is irreducible by Eisenstein’s
criterion[1.16. O

In order to construct a regulargon,p an odd prime, we need to construct

2mi 2mi,
cos%“:(ep + (e )™h/2.

But

Q[e%] D Q|cos 2?”] D Q,

and the degree (@[e%] overQlcos %’T] is 2 — the equation

27

a2—200527”~a+1:0, a=e¢er

shows that it is< 2, and it is notl becaus@[e%] is not contained ifR. Hence

o - P 1
[Q[cos =7 : Q] = —

Thus, if the regulap-gon is constructible, thefp — 1) /2 = 2* for somek (later [5.12),

we shall see a converse), which implies- 2**! + 1. But2" + 1 can be a prime only if

is a power of2, because otherwisehas an odd factarand fort odd,

Yitl=Y +DY" Y24 4 1);

whence

2 4 1= (22 + 1)((2°)" = (29)" 7+ - + 1),

Thus if the regulap-gon is constructible, them= 22" + 1 for somek. Fermat conjectured
that all numbers of the for22“ +1 are prime, and claimed to show that this is truekfot 5
— for this reason primes of this form are calleermat primes.For0 < k£ < 4, the num-

bersp = 3,5, 17,257, 65537, are prime but Euler showed thz# + 1 = (641)(6700417),

and we don’t know of any more Fermat primes.

Gauss showed that

) 1 1 1 1
0051—7; - _E+E‘/ﬁ+ﬁ\/34 — 2\/1_7+§\/17+ 3V17 — /34 — 2V17 — 24/ 34 + 2V/17

when he was 18 years old. This success encouraged him to become a mathematician.
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Algebraically closed fields

We say that a polynomiaplitsin F'[X] if it is a product of polynomials of degrekin
FIX].

PROPOSITION1.42. For a field(2, the following statements are equivalent:
(a) Every nonconstant polynomial {a X | splits inQ2[X].
(b) Every nonconstant polynomial {2 X] has at least one root ifo.
(c) The irreducible polynomials if2[X] are those of degree.
(d) Every field of finite degree ovér equals).

PrROOF. The implications (a}j=- (b) = (c) = (@) are obvious.

(c) = (d). Let ' be a finite extension dR. The minimum polynomial of any elemeant
of F has degreé, and sax € F.

(d) = (c). Let f be an irreducible polynomial i[X]. ThenQ[X]/(f) is an extension

field of Q of degreeleg(f) (seq 1.3D), and steg(f) = 1. O

DEFINITION 1.43. (a) A field(2 is said to bealgebraically closedvhen it satisfies the
equivalent statements of Propositjon 1.42.

(b) A field Q is said to be amlgebraic closureof a subfieldF’ when it is algebraically
closed and algebraic ovét.

For example, the fundamental theorem of algebra[(sege 5.6 below) says ithatge-
braically closed. Itis an algebraic closureRof

PrROPOSITION1.44. If ) is algebraic overF’ and every polynomiaf € F[X] splits in
Q[X], then( is algebraically closed (hence an algebraic closurgdf

PROOF. Let f € Q[X]. We have to show that has a root iff2. We know (se¢ 1.21) that
has a rooty in some finite extensiofY’ of €2. Set

f=a, X"+ +ag,a; €1,
and consider the fields
F C Flag,...,a,] C Flag,...,a,,ql.

Each extension is algebraic and finitely generated, and hence finjte (hy 1.30). Therefore
lies in a finite extension of’, and so is algebraic over — it is a root of a polynomial

g with coefficients inF'. By assumptiong splits inQ2[X], and so all its roots lie ifi2. In
particular,o € €. O

PrROPOSITION1.45. Let(2 D F'; then
{a € Q| a algebraic overF'}

is a field.

PROOF. If o and are algebraic oveF’, thenF[a, 3] is a field (by{ 1.3]L) of finite degree
over F (by[1.30). Thus, every element éf«, 3] is algebraic over, includinga + 33,

a/B, af. ]
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The field constructed in the lemma is called gigebraic closure ofF' in (2.

COROLLARY 1.46. Let Q) be an algebraically closed field. For any subfiéidof €2, the
algebraic closure of' in €2 is an algebraic closure of'.

PrROOF. From its definition, we see that it is algebraic ovérand every polynomial in
F[X] splits in it. Now Proposition 1.44 shows that it is an algebraic closuf€.of [

Thus, when we admit the fundamental theorem of algé¢bra (5.6), every subfie lolasf
an algebraic closure (in fact, a canonical algebraic closure). L#gme shall show that
the axiom of choice implies that every field has an algebraic closure.

Exercises 1-4

Exercises marked with an asterisk were required to be handed in.

1*. Let E = Q[a], wherea?® —a? +a+2 = 0. Expresga?+a+1)(a?—a) and(a—1)"1
in the formaa? + ba + c with a, b, c € Q.

2*. DetermingQ(v/2,V3) : Q.

3*. Let F' be afield, and lef (X) € F[X].
(a) Foranyu € F', show that there is a polynomig{X ) € F'[X] such that

J(X) = ¢(X)(X —a) + f(a),

(b) Deduce thaf(a) = 0 if and only if (X — a)|f(X).

(c) Deduce thaf(X) can have at mosteg f roots.

(d) LetG be afinite abelian group. (& has at mostn elements of order dividing: for
each divisom of (G : 1), show thatG is cyclic.

(e) Deduce that a finite subgroup Bf, F" a field, is cyclic.

4*, Show that with straight-edge, compass, and angle-trisector, it is possible to construct a
regular7-gon.
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2 Splitting fields; multiple roots

Maps from simple extensions.

Let £ andE’ be fields containing”. An F-homomorphismis a homomorphism
p: E— E'

such thatp(a) = a for all a € F'. Thus anF’-homorphism maps a polynomial

2 : i1 %
Ay, O 0 0 OénT, iy i, € F,

to ' '
N teiple) ).

An F-isomorphismis a bijective'-homomorphism. Note that i and £’ have the same
finite degree oveF’, then everyF’-homomorphism is af’-isomorphism.

PROPOSITION2.1. Let F'(«) be a simple field extension of a figl and let) be a second
field containingF'.
(a) Leta be transcendental ovér. For everyF’-homomorphisnp: F(a) — Q, p(«a) is
transcendental oveF’, and the map — ¢(«) defines a one-to-one correspondence

{F-homomorphismg: F(a) — Q} < {elements of2 transcendental oveF'}.

(b) Leta be algebraic ovef” with minimum polynomiaf (X'). For everyF-homomorphism
¢: Fla] — Q, p(«) is aroot of f(X) in 2, and the map> — ¢(«) defines a one-
to-one correspondence

{F-homomorphismg: F[a] — Q} < {roots of f in }.
In particular, the number of such maps is the number of distinct roofsif?.

PROOF. (a) To say thatv is transcendental ovdr means that'|[«] is isomorphic to the
polynomial ring in the indeterminate with coefficients inf'. For anyy € , there is a
uniqueF-homomorphismp: Fa] — Q sendingx to v (sed 1.5). This extends to the field
of fractions F'(«) of F|a] if and only if all nonzero elements df|«] are sent to nonzero
elements of2, which is so if and only ify is transcendental.

(b) Let f(X) = > a;X?, and consider a#’-homomorphismp: F[a] — Q. On ap-
plying ¢ to the equationy_ a;a’ = 0, we obtain the equatiol_ a;o(a)’ = 0, which
shows thatp(«) is a root of f(X) in Q. Conversely, ify € Q is a root of f(X), then
the mapF[X] — Q, g(X) — g(7), factors through?’[X]/(f(X)). When composed with
the inverse of the isomorphisti + f(X) — «a: F[X]/(f(X)) — Fla], it becomes a
homomorphisn¥'[a] — € sendingx to 7. O

We shall need a slight generalization of this result.

PROPOSITION2.2. Let F/(«) be a simple field extension of a fielt and letyy: F' — Q
be a homomorphism df into a second field.
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(@) If « is transcendental oveF, then the map — ¢(a) defines a one-to-one corre-
spondence

{extensiong: F(a) — Q of ¢y} < {elements of) transcendental ovep,(F)}.

(b) If « is algebraic overF, with minimum polynomiaf (X), then the magp — ¢(«a)
defines a one-to-one correspondence

{extensionsy: Fla] — Q of gy} < {roots ofp, f in Q}.

In particular, the number of such maps is the number of distinct roags 6fin €2.
By ¢of we mean the polynomial obtained by applying to the coefficients off:
if f = > aX"thenpyf = > ¢(a;)X*. By an extension ofy, to F'(or) we mean a
homomorphismp: F(«) — Q such thatp| F' = .
The proof of the proposition is essentially the same as that of the preceding proposition.

Splitting fields

Let f be a polynomial with coefficients if'. A field E containingF' is said tosplit f if f
splitsinE[X]: f(X) =[]~ (X — ;) with o; € E. If, in addition, £ is generated by the
roots of f,

E = Flay,...,onl,

then it is called asplitting field for f. Note that[] f;(X)™ (m; > 1) and]] f;(X) have
the same splitting fields.

EXAMPLE 2.3. (a) Letf(X) = aX? + bX + ¢ € Q[X], and leta = V/b? — 4ac. The
subfieldQ[a] of C is a splitting field forf.

(b) Let f(X) = X3 + aX? 4+ bX + ¢ € Q[X] be irreducible, and let, oy, a3 be
its roots iNC. ThenQ[ay, as, a3] = Qag, as] is a splitting field for f(X). Note that
[Q[au] : Q] = 3 and that|Q[ay, as] : Q[ay]] = 1 or 2, and so[Q[ay, as] : Q] = 3 or 6.
We'll see later[(4.R) that the degreesisf and only if the discriminant off (X) is a square
in Q. For example, the discriminant of* + X + ¢ is —4b* — 27¢%, and so the splitting
field of X3 + 10X + 1 has degreé overQ.

PROPOSITION2.4. Every polynomialf € F[X] has a splitting fieldZ;, and
[Ep: F] < (deg f)!.
PROOF. Let g; be an irreducible factor of (X ), and let
Fi = F[X]/(91(X)) = Floa], o1 =X+ (q1).

Thena, is aroot of f(X) in F7, and we defingf,(X) to be the quotienf (X)/(X — ay)
(in F1[X]). The same construction appliedfpe F;[X] gives us a field, = Fi[as] with
ap a root of f; (and hence also of). By continuing in this fashion, we obtain a splitting
field E;.

Letn = deg f. Then[F, : F| =deggs <mn, [Fo: Fi] <n—1,..,and sQE;: E] <
nl. O
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REMARK 2.5. For a given integet, there may or may not exist polynomials of degree

in F[X] whose splitting field has degree — this depends oii’. For example, there do
notforn > 1if F' = C (seg 5.B), nor fon. > 2if F' = [, (seq 4.1B) o = R. However,
later (4.28) we shall see how to write down large numbers of polynomials (in fact infinitely
many) of degree in Q[X] whose splitting fields have degreé

EXAMPLE 2.6. (a) Letf(X) = (X? —1)/(X — 1) € Q[X], p prime. If is one root off,
then the remainder ag, ¢3, ..., ¢!, and so the splitting field of is Q|[¢].

(b) Supposé- is of characteristip, and letf = X? — X —a € F[X]. If ais one root
of f, then the remainder are+ 1, ..., + p — 1, and so any field generated ovéhby « is
a splitting field forf (and F'[a] = F[X]/(f)).

(c) If « is one root ofX™ — @, then the remaining roots are all of the fogm, where
("™ = 1. Therefore, ifF contains all thex" roots of1 (by which we mean thak™ — 1 splits
in F'[X]), thenF[«] is a splitting field forX™ — a. Note that ifp is the characteristic af,
thenX? — 1 = (X — 1)?, and soF automatically contains all thé" roots of1.

PROPOSITION2.7. Let f € F[X]. Assume thall D F is generated by roots gf, and let
2 D F be afield in whichf splits.
(a) There exists at least onle-homomorphisnp: £ — Q.
(b) The number of’-homomorphism& — Qis < [E : F], and equalsE : F]if f has
deg( f) distinct roots inf).
(c) If £ and are both splitting fields forf, then each¥-homomorphisnk’ — 2 is an
isomorphism. In particular, any two splitting fields férare F'-isomorphic.

PROOF. By f havingdeg(f) distinct roots in2, we mean that

FOO =TI2D(X —ay), €, onaifij

If f has this property, then so also does any factof iof Q[ X .

By assumptionf = Flay, ..., a,,] With the a; roots of f(X'). The minimum polyno-
mial of «; is an irreducible polynomiaf; dividing f. As f (hencef;) splits in(2, Propo-
sition shows that there exists AFhomomorphisnp; : Fla;] — 2, and the number of
p1'sis < deg(f1) = [F[ay] : F], with equality holding whery; has distinct roots if.

The minimum polynomial ofv, over F'[a4] is an irreducible factoy, of f in Flaq]|[X].
According to Propositioh 2|2, each extends to a homomorphisgy: Flag, as] — €,
and the number of extensions<dsdeg(f2) = [F[a1, as] : Fla4]], with equality holding
when f, hasdeg( f>) distinct roots in.

On combining these statements we conclude that there existsfamomorphism
@: Flag, as] — Q, and that the number of such homomorphismsli$F oy, as] @ F],
with equality holding whery hasdeg( f) distinct roots in.

After repeating the argument several times, we obtain (a) and (b).

Any homomorphismi — € is injective, and so, if there exists such a homomorphism,
[E : F] < [Q: F]. Now (a) shows that ifZ and(2 are both splitting fields fof, then
[E: F] = [Q: F], and so any’-homomorphisn® — (2 is an isomorphism. O

COROLLARY 2.8. Let £ and L be extension fields df, with F finite overF'.
(a) The number of’-homomorphism& — L is at mos{E': F.
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(b) There exists a finite extensiéyy L and anF'-homomorphisnt — €.

PROOF. Write E = Flay,...,ay], and f be the product of the minimum polynomials
of the ;. Let 2 be a splitting field forf regarded as an element 6fX]. The propo-
sition shows that there is al-homomorphismi — €, and the number of such homo-
morphisms is< [E : F|. Since everyF-homomorphismF — L can be regarded as an
F-homomorphisnE — 2, this proves both (a) and (b). O]

REMARK 2.9. LetE, E», ..., E,, be finite extensions of’, and letL be an extension of
F'. The corollary implies that there is a finite extensiaii. containing an isomorphic copy
of everyF;.

Warning! If £ and E’ are both splitting fields of € F[X], then we know there is
an F-isomorphismtE’ — E’, but there will in general be npreferredsuch isomorphism.
Error and confusion can result if you simply identify the fields.

Multiple roots

Let f,¢g € F[X]. Even whenf andg have no common factor if'[X], one might expect
that they could acquire a common factor(aX| for someQ2 O F'. In fact, this doesn’t
happen — greatest common divisors don’t change when the field is extended.

PROPOSITION2.10. Let f and g be polynomials inF'[X], and letQ D> F. If r(X) is
the gcd off and g computed inF'[X], then it is also the gcd of and g in Q[X]. In
particular, distinct monic irreducible polynomials ifi[ X] do not acquire a common root
in any extension field af.

PROOF. Letrr(X) andrq(X) be the greatest common divisors pfandg in F[X] and
Q[X] respectively. Certainly»(X)|ro(X) in Q[X], but Euclid’s algorithm[(1)8) shows
that there are polynomiatsandb in F[X] such that

a(X)f(X) +b(X)g(X) = rr(X),

and sorq(X) dividesrz(X) in Q[X].
For the second statement, note that the hypotheses implydigt, g) = 1 (in F[X]),
and sof andg can’t acquire a common factor in any extension field. O

The proposition allows us to writged( f, g), without reference to a field.
Let f € F[X], and let

r

f(X) = aH(X — o)™, o distinct,m; > 1, Zm = deg(f), *)

=1 i=1

be a splitting off in some extension fiel@ of F'. We say thaty; is a root off of multiplicity
m;. If m; > 1, «; IS said to be anultiple rootof f, and otherwise it is aimple root

The unordered sequence of integers . .., m, in (*) is independent of the extension
field 2 in which f splits. Certainly, it is unchanged whéhis replaced with its subfield
Flay, ..., ay), but Flag, ...« is a splitting field forf, and any two splitting fields are
isomorphic[(2.J7c).
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We say thatf has a multiple rootwhen at least of the:; > 1, and we say thaf has
only simple rootsvhen allm; = 1.

We wish to determine when a polynomial has a multiple roof. lias a multiple factor
in F[X], sayf = [] fi(X)™ with somem,; > 1, then obviously it will have a multiple
root. If f =[] f; with the f; distinct monic irreducible polynomials, then Proposifion 2.10
shows thatf has a multiple root if and only if at least one of tlighas a multiple root.
Thus, it suffices to determine when an irreducible polynomial has a multiple root.

EXAMPLE 2.11. LetF be of characteristip. # 0, and assume that has contains an

elementa that is not ap™-power, for exampleq = T in the fieldF,(T). Then X? — a

is irreducible inF'[X], but X? — a = (X — «)? in its splitting field. Thus an irreducible

polynomial can have multiple roots.
Define the derivativg’ (X) of a polynomialf(X) = > a; X" to be> " ia; X*~'. When
f has coefficients iR, this agrees with the definition in calculus. The usual rules for
differentiating sums and products still hold, but note that in characteristie derivative
of X? is zero.

PROPOSITION2.12. For a nonconstant irreducible polynomiglin F[X], the following
statements are equivalent:

(a) f has a multiple root;

(b) ged(f, /') # 1

(c) F has characteristip # 0 and f is a polynomial inX?;

(d) all the roots off are multiple.

PROOF. (a) = (b). Leta be a multiple root off, and writef = (X —a)™g(X), m > 1,
in some splitting field. Then

FI(X) =m(X —a)"g(X) + (X —a)"g'(X).

Hencef’(«) = 0, and sazed(f, f') # 1.
(b) = (c). Sincef is irreducible andleg(f’') < deg(f),

ged(f, fY#1 = f'=0 = [ isapolynomial inX?.

(¢) = (d). Suppose(X) = g(X?), and letg(X) = [[(X — a;)™ in some splitting
field for f. Then

706) = 000 = T[00 - g = [ - ™

wherea! = a;. Hence every root of (X)) has multiplicity at leasp.
(d) = (a). Obvious. O

DEFINITION 2.13. A polynomialf € F[X] is said to beseparablf over F' if none of its
irreducible factors has a multiple root (in a splitting field).
The preceding discussion shows tlfat F'[X| will be separable unless

8This is the standard definition, although some authors, for example, Dummit and Foote 1991, 13.5, give
a different definition.
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(a) the characteristic af' isp # 0, and

(b) atleast one of the irreducible factorsfofs a polynomial inX?.
Note that, iff € F[X] is separable, then it remains separable over everyffiedntaining
F (condition (b) of 2.1P continues to hold).

DEFINITION 2.14. AfieldF' is said to beperfectif all polynomials in [ X] are separable
(equivalently, all irreducible polynomials if[ X | are separable).

PrROPOSITION2.15. A field of characteristic zero is always perfect, and a fieldf char-
acteristicp # 0 is perfect if and only if" = F?, i.e., every element df is ap™ power.

PROOF. We may supposé’ is of characteristip # 0. If F' contains an elementthat is
not ap™ power, thenX? — a € F[X] is not separable (sll). Conversely; i F?,
then every polynomial infX? with coefficients inF is ap™ power inF[X] — > a; X? =
(>ob:X)?if a; = b — and so it is not irreducible. O

EXAMPLE 2.16. (a) A finite fieldF" is perfect, because the Frobenius endomorphism
a+— aP: ' — Fisinjective and therefore surjective (by counting).
(b) A field that can be written as a union of perfect fields is perfect. Therefore, every
field algebraic oveF, is perfect.
(c) Every algebraically closed field is perfect.
(d) If Fy has characteristig # 0, thenF = F,(X) is not perfect, becaus¥ is not ap™
power.

Exercises 5-10

5*. Let F' be afield of characteristig 2.
(a) LetE be quadratic extension &f (i.e.,[E : F| = 2); show that

S(E)={a € F* | aisasquare i}

is a subgroup of™ containingF 2.

(b) Let £ and E’ be quadratic extensions &f; show that there is af’-isomorphism
p: E— E'ifand only if S(E) = S(E").

(c) Show that there is an infinite sequence of fieldsE,, . .. with E£; a quadratic ex-
tension ofQQ such thatF; is not isomorphic ta¥; for i # j.

(d) Letp be an odd prime. Show that, up to isomorphism, there is exactly one field with
p? elements.

6*. (a) Let F' be a field of characteristie. Show that ifX? — X — a is reducible inF'[X],
then it splits inF[X].
(b) For any primep, show thatX? — X — 1 is irreducible inQ[X].

7*. Construct a splitting field foX® — 2 overQ. What is its degree oved?
8*. Find a splitting field ofX?" — 1 € F,[X]. What is its degree ovéR,?

9. Let f € F[X]|, whereF is a field of characteristi@. Letd(X) = ged(f, f’). Show that
g(X) = f(X)d(X)~! has the same roots g§X ), and these are all simple rootsgfX).
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10*. Let f(X) be an irreducible polynomial if'[ X |, whereF" has characteristig. Show
that f(X) can be writtenf (X) = g(X*") whereg(X) is irreducible and separable. Deduce
that every root off (X') has the same multiplicity® in any splitting field.



3 THE FUNDAMENTAL THEOREM OF GALOIS THEORY 29

3 The fundamental theorem of Galois theory

In this section, we prove the fundamental theorem of Galois theory, which gives a one-to-
one correspondence between the subfields of the splitting field of a separable polynomial
and the subgroups of the Galois groupfof

Groups of automorphisms of fields

Consider fieldsZ O F. An F-isomorphismE’ — FE is called anf’-automorphismof E.
The F-automorphisms of’ form a group, which we denoteut(E/F).

ExAMPLE 3.1. (a) There are two obvious automorphism&€phamely, the identity map
and complex conjugation. We'll see later (8.18) that by using the Axiom of Choice one can
construct uncountably many more.

(b) Let £ = C(X). ThenAut(E/C) consists of the mafisX — 4, ad — be # 0
(Jacobson 1964, IV, Theorem 7, p158), and so

Aut(E/C) = PGL,(C),

the group of invertibl@ x 2 matrices with complex coefficients modulo its centre. Analysts
will note that this is the same as the automorphism group of the Riemann sphere. This
is not a coincidence: the field of meromorphic functions on the Riemann sfei®
C(z) = C(X), and so there is certainly a mamt(P:) — Aut(C(z)/C), which one can
show to be an isomorphism.

(c) The groupAut(C(X;, X5)/C) is quite complicated — there is a map

PGL3(C) = Aut(P%) — Aut(C(X;, X,)/C),

but this is very far from being surjective. When there are m¥dig the group is unknown.
(The groupAut(C(Xy, ..., X,)/C) is the group obirational automorphisms oPf. Itis
called theCremona group. Its study is part of algebraic geometry.)

In this section, we shall be concerned with the grodps(£/F') when £ is a finite
extension off'.

PROPOSITION3.2. If E is a splitting field of a monic separable polynomjale F[X],
thenAut(E/F) has order[E : F].

PROOF. Let f = [] f™, with the f; monic irreducible and distinct. The splitting field
of f is the same as the splitting field ¢f f;. Hence we may assumgis a product of
distinct monic separable irreducible polynomials, and so dwasf distinct roots inFE.
Now Propositior] 2]7 shows that there &fe : F] distinct -homomorphism& — E.
BecauseF has finite degree ovér, they are automatically isomorphisms. O

ExAMPLE 3.3. (a) Consider a simple extensiéh= F'[a], and letf be a polynomial with
coefficients inf” havinga as a root. Iff has no root in other thany, thenAut(E£/F) = 1.

°By this | mean the map that sends a rational funciféi ) to f(&5).
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For example, if{/2 denotes the real cube rootfthenAut(Q[v/2]/Q) = 1. Thus, in the
proposition, it is essential th&t be asplitting field.

(b) Let F be afield of characteristjc # 0, and leta be an element of that is not g™
power. Thenf = X? — a has only one root in a splitting field, and soAut(E/F) = 1.
Thus, in the proposition, it is essential thabe a splitting field of aeparablepolynomial.

When( is a group of automorphisms of a field, we write

E°=Inwv(G)={a € Floa=a,alcc G}

It is a subfield ofF, called the subfield of/-invariants of £ or thefixed fieldof G.
In this section, we shall show that, whénis the splitting field of a separable polyno-
mial in F[X] andG = Aut(E/F), then the maps

M — Aut(E/M), H v~ Inv(H)

give a one-to-one correspondence between the set of intermediateMfieldlsc M C F,
and the set of subgrougs of G.

PROPOSITION3.4 (E. ARTIN). LetG be a finite group of automorphisms of a fidlgdand
let F = EY then[E : F] < (G : 1).

PROOF. LetG ={oy =1,...,0,},andletay, ..., «, ben > m elements of£. We shall
show that they; are linearly dependent ovét. In the system of linear equations (*)

o1(a) X1+ -+ o1(an) X, =0

O'm<Oél)X1 + 4 O'm(Oén>Xn =0

there aren equations and > m unknowns, and hence there are nontrivial solutions.in
Choose a nontrivial solutiofty, . . ., ¢,) with the fewest possible nonzero elements. After
renumbering they;'s, we may suppose that # 0, and then (after multiplying by a scalar)
thatc; € F'. With these normalizations, we’ll show that ajle F'. Then the first equation

o)+ -+ anc, =0

(recall thato; = 1) will be a linear relation on the;.
If not all ¢; are inF’, thenoy(c;) # ¢; for somek andi, k # 1 # i. On applyingoy, to
the equations

O'1<Oél>01 + -+ O'l(Oén>Cn =0

om(ar)er + -+ 4+ om(an)e, =0
and using thafoo4, . .., 0,0, } is a permutation of oy, . . ., 0., }, we find that
(Cl, O'k;<62)7 c. ,O'k<Ci), .. )

is also a solution to the system of equations (*). On subtracting it from the first, we obtain
a solution(0, ..., ¢; — ox(c;), . ..), which is nonzero (look at thé" coordinate), but has
more zeros than the first solution (look at the first coordinate) — contradiction. [
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COROLLARY 3.5. For any finite group’ of automorphisms of a fieldl, G = Aut(E/E®).

ProoE We know that:

—[E:E° < (G:1) (by[3.4).
— G C Aut(E/E%) (obvious),
— (Awt(E/E%): 1) < [E: EY] (by[2.8a).

The inequalities
[E:E% < (G:1) < (Auwt(E/E®):1) <[E: EY

must be equalities, and €0= Aut(E/EY). O

Separable, normal, and Galois extensions

DEFINITION 3.6. An algebraic extensiof'/F is said to beseparableif the minimum
polynomial of every element of is separable; otherwise, itiilsseparable

Thus, an algebraic extensidfy F' is separable if every irreducible polynomial # X |
having a root inF is separable, and it is inseparable if

— F'is nonperfect, and in particular has characterigti€ 0, and

— there is an element of £ whose minimal polynomial is of the form(X?), g €

F[X].
For exampleE = [F,(T) is an inseparable extension®f(77).

DEFINITION 3.7. An algebraic extensiof/ F' is normal if the minimum polynomial of
every element of splits in E[X].

Thus, an algebraic extensidsy F' is normal if every irreducible polynomigl € F[X]
having a root in¥' splits in £.

Let f be an irreducible polynomial of degreein F[X]. If f has a root inF, then

E/F separable — roots of f distinct
— f hasm distinct roots inE.
E/Fnormal — fsplitsinE

Therefore,E//F' is normal and separable if and only if, for eaghe E, the minimum
polynomial ofa has[F[«] : F] distinct roots ink.

EXAMPLE 3.8. (a) The fieldQ[v/2], where+/2 is the real cube root of 2, is separable but
not normal overQ (X3 — 2 doesn’t split inQ[a]).

(b) The fieldF,(T") is normal but not separable ovigs(7”) — the minimum polyno-
mial of 7" is the inseparable polynomi&l? — 77,

DEFINITION 3.9. LetF be a field. A finite extensio® of F' is said toGaloisif F' is the
fixed field of the group off'-automorphisms off. This group is then called th@alois
groupof E over F, and it is denoted@ral(E/F').

THEOREM 3.10. For an extensior’/ F, the following statements are equivalent:
(a) Eis the splitting field of a separable polynomjak F[X].
(b) F = E¢ for some finite groud: of automorphisms af.
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(c) Eis normal and separable, and of finite degree, oker
(d) E is Galois overF'.

PROOF. (@) = (b,d). LetG = Aut(E/F), and letF” = E“ > F. ThenE is also the
splitting field of f regarded as a polynomial with coefficientsAiy andf is still separable
when it is regarded in this way. Hence Proposifior} 3.2 shows that

[E: F'| = # Aut(E/F")

[E: F| =#Aut(E/F).

SinceAut(E/F') = Aut(E/F) = G, we conclude that’ = F’, and soF = E°.

(d) = (b). According to[(2.Ba)Gal(E/F) is finite, and so this is obvious.

(b) = (c). By Propositiori 34, we know thaE : F] < (G : 1); in particular, it is
finite. Leta € F and letf be the minimum polynomial af; we have to prove that splits
into distinct factors inE[X]. Let{a; = a, ..., a,,,} be the orbit ofw under the action ofr
on E, and let

g(X) = H(X —) = X"+ X" 4 a,.

Any o € G merely permutes the;. Since thea; are symmetric polynomials in the;,
we find thatoa; = q; for all 7, and sog(X) € F[X]. Itis monic, andg(«) = 0, and
so f(X)|g(X) (see the definition of the minimum polynomial p14). But ajge)| f(X),
because each; is a root of f(X) (if a; = o«, then applyings to the equatiory(a) = 0
gives f(a;) = 0). We conclude thaf (X) = g(X), and sof (X) splits into distinct factors
in E.

(c) = (a). Because&® has finite degree ovef, it is generated ovef' by a finite
number of elements, saf; = Fla, ..., a], @ € E, «; algebraic overF. Let f; be the
minimum polynomial ofo; over F'. Becauser is normal overF’, eachf; splits in £/, and
SO F is the splitting field off = [] f;. BecauseV is separable oveF, f is separable. [J

REMARK 3.11. LetFE be Galois ovel” with Galois group, and letoe € E. The elements
ap = a, as, ..., a,, Of the orbit ofa are called theconjugatesof «. In the course of the
proof of (b) = (c) of the above theorem we showed that the minimum polynomial of

is TT(X — ai).

COROLLARY 3.12. Every finite separable extensid@nof F' is contained in a finite Galois
extension.

PROOF. LetE = Flay, ..., ). Let f; be the minimum polynomial of; over F', and take
E’ to be the splitting field of | f; over . O

COROLLARY 3.13. LetE D M D F: if Eis Galois overF’, then it is Galois ovei\!.

PROOF. We know E is the splitting field of somg € F[X]; it is also the splitting field of
f regarded as an element bf[ X]. O
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REMARK 3.14. When we drop the assumption tlkats separable ovel’, we can still say
something. LetE’ be a finite extension of’. An elementa € E is said to beseparable
over F' if its minimum polynomial overF’ is separable. The elements Bfseparable over
F form a subfieldE’ of E that is separable over; write [E : Flsp= [E' : F| (Separable
degreeof £/ over F'). If Q2 is an algebraically closed field containig then the number of
F-homomorphismdl — Qis [E : Flse, WhenE D M D F (finite extensions),

[E . F]Sep: [E . M]SeF{M . F]Sep
In particular,
FE is separable ovel" < F is separable ovel/ and M is separable ovef’

For proofs, see Jacobson 1964, 1 10.

DEFINITION 3.15. A finite extension® O F is called acyclic, abelian, ..., solvable
extension if it is Galois with cyclic, abelian, ..., solvable Galois group.

The fundamental theorem of Galois theory

THEOREM 3.16 (FUNDAMENTAL THEOREM OF GALOIS THEORY). Let £ be a Galois
extension of’, and letG = Gal(E/F). The mapsdH — E* and M — Gal(E/M)
are inverse bijections between the set of subgrougs ahd the set of intermediate fields
betweent and F:

{subgroups of7} < {intermediate field$" C M C E}.

Moreover,
(a) the correspondence is inclusion-reversidg; > H, <= £ c EHz;
(b) indexes equal degree§H; : H,) = [EH2 : F;
(¢) cHo ' < oM, ie,E°H" = g(ET); Gal(E/oM) = ¢ Gal(E/M)o".
(d) HisnormalinG <= E*" is normal (hence Galois) ovdr, in which case

Gal(E"/F) = G/H.

PrROOF. For the first statement, we have to show tHat- £ andM +— Gal(E/M) are
inverse maps.

Let i be a subgroup of:. ThenE is Galois overE™ by (3.13), which means that
Gal(E/E") = H.

Let M be an intermediate field. Thefiis Galois over)M by (3.13), which means that
EGal(E/M) - M.

(a) We have the obvious implications:

H, D> Hy = E™ Cc E™ = Gal(E/E™) D Gal(E/E™).

But Gal(E/Ef:) = H,.
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(b) The fieldE is Galois overE*1, hence the splitting field of a separable polynomial
(3.10), and so[ (3]2) shows thgt : E1] = Gal(E/E™). This proves (b) in the case
H, = 1, and the general case follows, using that

(Hy:1)=(H,: H))(Hy:1) and [E:E™]=[E:E")[E" . g,

(c)Forr € Ganda € E,7a = a <= o710 '(0a) = oa. ThereforeGal(E /o M) =
o Gal(E/M)o~!, and sar Gal(E/M)o~! < oM.

(d) Let H be a normal subgroup @f, and letM = EY. BecauserHo~! = H for alll
o € G,we must have M = M for all o € G, i.e., the action of7 on E stabilizesM. We
therefore have a homomorphism

o—o|lM:G— Aut(M/F)

whose kernel is. Let G’ be the image. Thel = M%, and soM is Galois overF
(by Theorenj 3.10). Thugy = MG(M/T) | and the first part of the theorem applied to the
M/F implies thatGal(M/F) = G'.

Conversely, assume thaf is normal over, and writeM = Flay, ..., a,,). Foro € G,
oa; IS a root of the minimum polynomial ef; over £, and so lies inV/. Hences M = M,
and this implies that Ho—! = H (by (c)). O

REMARK 3.17. The theorem shows that there is an order reversing bijection between the
intermediate fields of' / F and the subgroups 6f. Using this we can read off more results.

(a) Let My, M, ..., M, be intermediate fields, and I&t; be the subgroup correspond-
ing to M, (i.e., H; = Gal(E/M,)). Then (by definition)\/; M, - - - M, is the smallest field
containing all)M;; hence it must correspond to the largest subgroup contained fi; all
which is( H;. Therefore

Gal(E/M, ---M,) = H, N ...N H,.

(b) Let H be a subgroup aoff and letM = E*. The largest normal subgroup contained
in His N = N,eqoHo™! (see GT 4.10), and sB”, which is the composite of the fields
oM, is the smallest normal extension®fcontaining) . Itis called thenormal, or Galois,
closure ofM in E.

PrRoOPOSITION3.18. Let F and L be field extensions @f contained in some common field.
If E/F is Galois, thenE'L/L and E/E N L are Galois, and the map

o o|E: Gal(FL/L) — Gal(E/ENL)

is an isomorphism.

PROOF. BecauseF' is Galois overF, it is the splitting field of a
separable polynomiaf € F[X]. ThenEL is the splitting field off EL
over L, and E is the splitting field off over £ N L. HenceE'L/L and / NS
E/E N L are Galois. 5

Any automorphisnr of E L fixing the elements of. maps roots of
f toroots off, and sov EF = E. There is therefore a homomorphism N S

ENL
o o|E: Gal(FL/L) — Gal(E/F). ‘

L
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If o € Gal(E'L/L) fixes the elements df, then it fixes the elements
of EL, and hence is. Thus,c — o|E is injective.

If « € Fisfixed by allc € Gal(EFL/L), thena € LN E. By the fundamental theorem,
this implies that the image of — o|F is Gal(E/E N L). O

COROLLARY 3.19. Suppose, in the proposition, thatis finite overF'. Then

[E : F|[L: F)

[EL: F] = EnL

ProOF. According tq 1.2D,
[EL: F] = [EL: L|[L: F],
but -
[EL: L)*F(E: EﬂL}M.

]

PrOPOSITION3.20. Let E/; and E; be field extensions df contained in some common
field. If £, and I/, are Galois overF', thenE; E; and £, N E5 are Galois overF', and

o (0|Ey,0|Ey) : Gal(E1Ey/F) — Gal(Ey /F) xGal(Ey/F)
is an isomorphism ofal( £, E,/ F') onto the subgroup
H = {(0’1,0’2) | O'l‘El N E2 == O'2|E1 N EQ}

of Gal(E, /F) x Gal(Ey/ F).
PROOF Leta € E; N E,, and letf be its minimum polynomial
over F. Thenf hasdeg f distinct roots inF; anddeg f distinct roots E\FE,
in E5. Sincef can have at mosteg f roots inE; F», it follows that it / N
hasdeg f distinct roots inE; N E,. This shows that’; N Es is normal i o
and separable ovéf, and hence Galoi§ (3.110). ! 2
As F; and F, are Galois ovel”, they are splitting fields of sep- AN /
arable polynomialsy, fo € F[X]. Now E} E, is a splitting field for EiNE,
f1f2, and hence it also is Galois over ‘
The mapr — (0| E1, 0| E») is clearly an injective homomorphism,
and its image is contained iH. We prove that the image is the whole
of H by counting.
From the fundamental theorem,

Gal(Eg/F)/Gal(Eg/El N EQ) = Gal(E1 N EQ/F),

and so, for eaclr € Gal(E,/F), o|E; N Ey has exacthyEy: E; N E,] extensions to an
element ofGal(E,/ F'). Therefore,

Ey: F]-[Ey: F]
B\ NEy: F]

which equal§E; E, : F| by (3.19) O

(H: 1) = [By: Fl[By: By By] =
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Examples
EXAMPLE 3.21. We analyse the extensi@i(]/Q, where( is a primitive7™ root of 1, say
C — 627rz'/7_
Note thatQ|(] is the splitting field of the polynomial
X7 — 1, and that. has minimum polynomial

X X+ X+ X3+ X2+ X +1 / \

(se€ 1.411). Therefor&)|(] is Galois of degreé overQ. For Q¢+ V=1l
anyo € G, o¢ = (%, somei, 1 < i < 6, and the map — i \ /
defines an isomorphisi@ial(Q[(]/Q) — (Z/7Z)*. Leto (@)/{o

be the element ofial(Q[¢]/Q) such thatr¢ = (3. Theno

generateszal(Q[¢]/Q) because the class 6fin (Z/7Z)*

generates it (the powers Bfmod7 are3, 2,6, 4,5, 1). We investigate the subfields @f(]
corresponding to the subgrou(;zs3 and(o?).

Note thato®¢ = (¢ = ¢ (complex conjugate oj) The subfield ofQ[¢] corresponding
to (0%) is Q[¢ + ¢], and¢ + ¢ = 2 cos 2. Since(c?) is a normal subgroup df), Q[¢ + (]
is Galois overQ, with Galois group<a)/( 3). The conjugates of, =4 ¢ + ¢ areas =
3+ (73, ay = (% + (2. Direct calculation shows that

6 )
041+a2+053:2i:1< = _17
109 + [e5Ne%:! + Qolg = —2,

C+ONC+EONE+CY
=(+C+HI+ONE+D
= (

=1.

10y =

CHCH14+CH+CH14+C+HB

Hence the minimum polynomf&of ¢ + C is
g(X)=X*4+ X*—2X — 1.
The minimum polynomial ofos 2= = 4 is therefore

9(2X)
8

The subfield ofQ[¢] corresponding tdo?) is generated bys = ¢ + ¢(* + ¢*. Let
B’ = of3. Then(B — 3')? = —7. Hence the field fixed byo?) is Q[v/—7].

= X3+ X?/2-X/2-1/8.

EXAMPLE 3.22. We compute the Galois group of a splitting figlef X° — 2 € Q[X].

OMore directly, on settingd = ¢ + Cin
(X3 -3X)+ (X2 —2)+ X +1

one obtaind + ¢ +¢24---+ (¢ =0.
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Recall from Exercise 7 thdf = Q|(, o] where( is a primi-
tive 51" root of 1, anda is a root ofX°—2. For example, we could
take F to be the splitting field ofX® — 2 in C, with ¢ = /5 / \
anda equal to the real™ root of 2. We have the picture at rlght@[

The degrees
[Q[¢]: Q] =4, [Q[o]:Q]=5. G/\ /

Becausel and5 are relatively prime,

[Q[C, o] - Q] = 20.

HenceG = Gal(Q[¢, «|/Q) has order0, and the subgroupd and H corresponding to
Q[¢] andQ[«] have order$ and4 respectively. Becaus@|(] is normal overQ (it is the

splitting field of X® — 1), N is normal inG. BecauseQ[(] - Qo] = Q[¢, a], we have
HNN =1,and soG = N x4 H. Moreover,H = G/N = (7Z/5Z)*, which is cyclic,

being generated by the class2ofiLet r be the generator dff corresponding t@ under this
isomorphism, and let be a generator aV. Thuso(«) is another root ofX® — 2, which

we can take to béa (after possibly replacing by a power). Hence:

¢ = ¢ o = ¢

T = « oca = (a.
Note thatror~!(a) = Toa = 7(Ca) = (*a and it fixes(; thereforeror=! = o2, ThusG
has generators andr and defining relations

The subgroug has five conjugates, which correspond to the five fi€3a],

o'Ho "« o'Qla] = Q[¢'al, 1<i<5.

Constructible numbers revisited

Earlier, we showed (1.36) that a numbeis constructible if and only if it is contained in a

field Q[y/a1] - - - [\/a,|. In particular

a constructible = [Q[a] : Q] = 2° somes.

Now we can prove a partial converse to this last statement.

THEOREM 3.23. If « is contained in a Galois extension @f of degree2”, then it is con-
structible.

PROOF. Supposex € E whereF is Galois overQ of degree2”, and letG = Gal(£/Q).
From a theorem on the structure@froups (GT 6.7), we know there will be a sequence
of groups

{1}=GocGiCcGyC---CG, =G



3 THE FUNDAMENTAL THEOREM OF GALOIS THEORY 38

with G;/G;_, of order2. Correspondingly, there will be a sequence of fields,
E:EODElDEQD"'DEr:@

with E;_; of degree over F;.

But the next lemma shows that every quadratic extension is obtained by extracting a
square root, and we knoy (1]35) that square roots can be constructed using only a ruler and
compass. This proves the theorem. O

LEMMA 3.24. Let E/F be a quadratic extension of fields of characteristic2. Then
E = F[/d] for somed € F.

PROOF. Leta € E,a ¢ F, and letX? + bX + ¢ be the minimum polynomial of. Then
a = =2 gand soF = F[VD? — 4d. O

COROLLARY 3.25. If p is a prime of the forn2* + 1, thencos 7 is constructible.

PROOF. The fieldQ[e*"*/?] is Galois overQ with Galois groupG = (Z/pZ)*, which has
orderp — 1 = 2F, O

Thus a regulap-gon, p prime, is constructible if and only if is a Fermat prime,
i.e., of the form2*" + 1. For example, we have proved that the regéki37-polygon is

constructible, without (happily) having to exhibit an explicit formula fos %

The Galois group of a polynomial

If the polynomial f € F'[X] is separable, then its splitting field; is Galois overF’, and
we callGal(F/F') the Galois groupG/ of f.

Let f = T[] ,(X — «;) in a splitting field F;. We know elements oGal(F;/F)
map roots off to roots of f, i.e., they map the sdt;, s, ..., a,} into itself. Being
automorphisms, they define permutation§of, as, ..., a,}. As Fy = Floy, ..., q,), @n
element ofGal(F/F) is uniquely determined by its action dov;, o, . . ., oy, }. ThusGy
can be identified with a subset 9fm({aq, as, ..., a,}) = S,. In fact, G, consists of the

permutationsr of {ay, an, ..., a,} such that, forP? € F[X;, ..., X,],
Play,...,a,) =0 = P(oay,...,0a,) =0.

This gives a description off; without mentioning fields or abstract groups (neither of
which were available to Galois).
Note that this shows th& : 1), hence Fy: F), dividesdeg(f)!.

Solvability of equations

For a polynomialf € F[X], we say thatf(X) = 0 is solvable in radicalsif its solu-
tions can be obtained by the algebraic operations of addition, subtraction, multiplication,
division, and the extraction of!" roots, or, more precisely,if there exists a tower of fields

F=F,CFCF,cC---CF,

such that
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(@) F, = Fi_1|a], " € Fi_q;
(b) F,, contains a splitting field foy.

THEOREM 3.26 (GALOIS, 1832). Let F' be a field of characteristic zero. The equation
f = 0is solvable in radicals if and only if the Galois group pis solvable.

We shall prove this latef (5.29). Also we shall exhibit polynomj&l&’) € Q[X] with
Galois groups,,, which are therefore not solvable whern> 5 by GT 4.29.

REMARK 3.27. If I has characteristig, then the theorem fails for two reasons:

(a) f may not be separable, and so not have a Galois group;

(b) X? — X —a = 0is not solvable by radicals.
If the definition of solvable is changed to allow extensions of the type in (b) in the chain,
and f is required to be separable then the theorem becomes true in charagteristic

Exercises 11-13

11*. Let ' be a field of characteristit. Show that’(X?) N F(X? — X) = F (intersection
inside F'(X)). [Hint: Find automorphisms andr of F(X), each of ordeg, fixing F'(X?)
andF(X? — X) respectively, and show that- has infinite order.]

12*@ Let p be an odd prime, and I€tbe a primitivep™ root of 1 in C. Let E = Q[(],
and letG = Gal(F/Q); thusG = (Z/(p))*. Let H be the subgroup of indexin G. Put
a=>cyCandsd =73 .y Show:

(a) aandg are fixed byH,;

(b) ifc € G\ H, thenoa = 3,0 = a.
Thusa andg are roots of the polynomiat? + X + a3 € Q[X]. Computen3 and show
that the fixed field of is Q[,/p] whenp =1 mod 4 andQ[/—p] whenp = 3 mod 4.

13, Let M = Q[v2, V3] andE = M[y/(v2 + 2)(v3 + 3)] (subfields ofk).
(&) Show that\/ is Galois overQ with Galois group the-groupCy x Cs.
(b) Show that~ is Galois overQ with Galois group the quaternion group.

1This problem shows that every quadratic extensiof &f contained in a cyclotomic extension@f The
Kronecker-Weber theorem says that evabglianextension ofQ is contained in a cyclotomic extension.
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4 Computing Galois groups.

In this section, we investigate general methods for computing Galois groups.

WhenisGy C A,?

Consider a polynomial
fX)=X"+a, X" '+ +ta,

and letf(X) =[], (X — «;) in some splitting field. Set

Af)y= ][] (@-a), DH=A"= ][] (-

1<i<j<n 1<i<j<n

The discriminant of f is defined to beD(f). Note thatD(f) is nonzero if and only if
f has only simple roots, i.e., if is separable with no multiple factors. Lét; be the
Galois group off, and identify it with a subgroup &fym({a, ..., ®,}) (as on p3B). The
choice of a numbering for the roots determines an isomorpRism({«, ..., a,}) = S,
and the subgroup dym({c, ..., «a,}) corresponding to any normal subgroup%fis
independent of the choice.

PrROPOSITION4.1. Assumef is separable, and let € G.
(@) o A(f) = sign(o)A(f), wheresign(o) is the signature oé.
(0) o D(f) = D(f)-

PrROOF. The first equation follows immediately from the definition of the signature of
(see GTg4), and the second equation is obtained by squaring the first. O

COROLLARY 4.2. Let f(X) € F[X] be of degree: and have only simple roots. L&} be
a splitting field forf, so thatG ; = Gal(F/F).

(&) The discriminantD(f) € F.

(b) The subfield of’; corresponding t4,, N G is F[A(f)]. Hence

Gy C A, < A(f) e F < D(f)isasquare inF.

PROOF. (a) The discriminant of is an element of; fixed by G; =4 Gal(Fy/F'), and
hence lies inF’ (by the fundamental theorem of Galois theory).

(b) Becausef has simple roots)\(f) # 0, and so the formulaA(f) = sign(o)A(f)
shows that an element 6f; fixes A( f) if and only if it lies in A,,. Thus, under the Galois
correspondence,

Gy N A, < FIA(f)].

Hence,
GfﬂAnZGf — F[A(f)] = F.
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The discriminant off can be expressed as a universal polynomial in the coefficients of
f. For example:

D(aX?+bX +c) = (b* — dac)/a®
D(X? +bX +¢) = —4b> — 27¢°.

By completing the cube, one can put any cubic polynomial in this form (in characteristic
# 3).

The formulas for the discriminant rapidly become very complicated, for example, that
for X° + aX* + bX?3 + cX? + dX + e hash9 terms. Fortunately, Maple knows them: the
syntax is tiscrim(f,X); " where f is a polynomial in the variabl&’.

REMARK 4.3. Suppos&”’ C R. ThenD(f) will not be a square if it is negative. It is
known that the sign oD(f) is (—1)® where2s is the number of nonreal roots g¢fin C
(see ANT 2.39). Thus if is odd, then7; is not contained i,,. This can be proved more
directly by noting that complex conjugation acts on the roots as the produatlisjoint
transpositions.

Of course the converse is not true: wheis even,G/ is not necessarily contained in
A,.

When is G transitive?

PROPOSITION4.4. Let f(X) € F[X] have only simple roots. Thef{X) is irreducible if
and only ifG'; permutes the roots of transitively.

PROOF = : If a andf are two roots off (X) in a splitting field F; for f, then they
both havef (X)) as their minimum polynomial, and so there is an obviéusomorphism
Fla] — F[fF], namely,

Flo] 2 FIX]/(f(X)) = F[f], aoXof

Write Fy = Flog, as,...] with o = o anday, a, . . . the other roots off (X). Then the
F-homomorphismy — §: Fla] — Fy extends (step by step) to @+homomorphism
Fy — Fy (usg 2.2b), which is af™-isomorphism sending to 3.

<= Letg(X) € F[X] be an irreducible factor of, and leta be one of its roots. I
is a second root of, then (by assumptionj = oo for somes € G;. Now, because has
coefficients inF’,

gloa) = og(a) =0,
and sog is also a root of;. Therefore, every root of is also a root ofy, and sof (X) =
9(X). O

Note that whenf(X) is irreducible of degree, n|(G; : 1) becausgF[a] : F|] = n
and[F[a] : F|divides[F} : F] = (G : 1). ThusG; is a transitive subgroup &f,, whose
order is divisible byn.
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Polynomials of degree< 3

EXAMPLE 4.5. Letf(X) € F[X] be a polynomial of degre2. Then f is inseparable
<= [ has characteristiz and f(X) = X? — a for somea € F \ F?. If f is separable,
thenG; = 1(= A,) or S, according ad)(f) is a square it or not.

EXAMPLE 4.6. Letf(X) € F[X] be a polynomial of degreg We can assumg to be
irreducible, for otherwise we are essentially back in the previous case. fTisansepara-
ble if and only if F has characteristig and f (X) = X* — a for somea € F \ F?. If fis
separable, thetr; is a transitive subgroup df; whose order is divisible bg. There are
only two possibilities:G; = Az or Ss according ag)(f) is a square irF’ or not. Note that
As is generated by the cycl@23).

For example,X® — 3X + 1 € Q[X] is irreducible (se¢ 1.12), its discriminant is
—4(—=3)% — 27 = 81 = 92, and so its Galois group i4;.

On the other handX?® + 3X + 1 € Q[X] is also irreducible (apply 1.11), but its
discriminant is—135 which is not a square i, and so its Galois group is;.

Quatrtic polynomials

Let f(X) be a quartic polynomial without multiple roots. In order to determifiewe
shall exploit the fact tha$, has

V ={1,(12)(34), (13)(24), (14)(23)}

as a normal subgroup — it is normal because it contains all elements o tyde (GT
4.28). LetE be a splitting field off, and letf(X) = [[(X — «;) in E. We identify
the Galois groug+, of f with a subgroup of the symmetric gro8pm({ay, as, s, oy }).
Consider the partially symmetric elements

o = Qg + Q30
B = ajog + gy

Y= 0y + Qiatvs.
They are distinct because theare distinct; for example,
a—0=a(a —a3)+ag(az — a) = (a1 — ay) (g — a3).

The groupSym({a1, as, as, ay}) permutes«, 3, v} transitively. The stabilizer of each of
a, B, must therefore be a subgroup of indeb S, and hence has ord&r For example,
the stabilizer of3 is ((1234), (13)). Groups of ordeB in S, are Sylow2-subgroups. There
are three of them, all isomorphic 19,. By the Sylow theoremd; is contained in a Sylow
2-subgroup; in fact, because the Syl@vsubgroups are conjugate ahdis normal, it is
contained in all three. It follows that is the intersection of the three Syl@subgroups.
Each Sylow2-subgroup fixes exactly one af, 3, or v, and therefore their intersectidn
is the subgroup dbym({ a1, as, as, as}) fixing «, 5, and-.

LEMMA 4.7. The fixed field of7; NV is Fla, 3,7]. HenceF[«, 3,~] is Galois overF
with Galois groupG /Gy N V.
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PrOOF. The above discussion shows that the subgrou@06f elements fixing#[«, 3, 7]
is Gy NV, and soE“" = F[a, 3,7] by the fundamental theorem of Galois theory. The

remaining statements follow from the fundamental theorem usingthanhormal. ]
Let M = Fla, 8,4], and letg(X) = (X — a)(X — 3)(X — ) € M[X] —

it is called theresolvent cubioof f. Any permutation of they; (a fortiori, any E
element ofGy) merely permutes, 3, v, and so fixeg/(X). Therefore (by the
fundamental theoremy)(.X') has coefficients if". More explicitly, we have: GV
LEMMA 4.8. The resolvent cubic of = X* 4+ bX?3 + cX? +dX +eis Fla, 5,7]

g=X>—cX?+ (bd — 4e)X — b*e + 4ce — d°. GGV

F

The discriminants of and g are equal.

PROOF(SKETCH). Expandf = (X — ay)(X — a2)(X — a3)(X — ay) tO

express, c, d, e in terms ofay, as, a3, ay. Expandg = (X —a)(X — 5)(X —~) to express
the coefficients ofy in terms ofaq, as, as, a4, and substitute to express them in terms of
b,c,d,e. [

Now let f be an irreducible separable quartic. Tlier= G is a transitive subgroup of
S4 whose order is divisible by. There are the following possibilities fo#:

G| (GNV:1)|(G:VNG)

Sy 4 6

Ay 4 3 (GNV:1)=[E:M]
Vv 4 1 (G:VNG)=[M:F|
Dy 4 2

Cy 2 2

The groups of typé), are the Sylow2-subgroups discussed above, and the groups of type
C, are those generated by cycles of lengith

We can computdG : V N G) from the resolvent cubig, becausez/V N G =
Gal(M/F) and M is the splitting field ofg. Once we know(G : V N G), we can de-
duceG exceptin the case thatitis If [M : F] = 2,thenGNV =V or C;. Only the first
group acts transitively on the roots pfand so (fronf 4}4) we see that in this case= D,
or C, according ag is irreducible or not inV/ [ X].

EXAMPLE 4.9. Considerf(X) = X* +4X? + 2 € Q[X]. Itis irreducible by Eisenstein’s
criterion ), and its resolvent cubic(i& — 4)(X? — 8); thusM = Q[v/2]. From the
table we see that/, is of type D, or Cy, but f factors over)/ (even as a polynomial in
X?), and hencé; is of typeC,.

EXAMPLE 4.10. Considerf(X) = X* — 10X2 + 4 € Q[X]. ltis irreducible inQ[X]
because (by inspection) it is irreducible Z.X]. Its resolvent cubic igX + 10)(X +
4)(X —4), and soG; is of typeV/.
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ExXAMPLE 4.11. Considerf(X) = X* — 2 € Q[X]. Itis irreducible by Eisenstein’s
criterion ), and its resolvent cubicgéX) = X° + 8X. HenceM = Qliv/2]. One
can check thaf is irreducible overl/, andG is of type D,.

Alternatively, analyse the equation as[in (3.22).

As we explained in (1.29), Maple knows how to factor polynomials with coefficients in

Qla].

Examples of polynomials with.S, as Galois group overQ
The next lemma gives a criterion for a subgrougbpto be the whole of,,.

LEMMA 4.12. For p prime, the symmetric grouf, is generated by any transposition and
anyp-cycle.

PROOF. After renumbering, we may assume that the transpositior-ig12), and we may
write thep-cycleo so thatl occurs in the first positiory = (14, - - - i,,). Now some power
of o will map 1 to 2 and will still be ap-cycle (here is where we use thats prime). After
replacingo with the power, we may suppose= (12j; ... j,), and after renumbering
again, we may suppose= (123...p). Then we’'ll have(12), (23), (34), (45),...inthe
group generated by andr, and these elements generéte O

PROPOSITION4.13. Let f be an irreducible polynomial of prime degreen Q[X]. If f
splits inC and has exactly two nonreal roots, théfy = S,,.

PROOF. Let F be the splitting field off in C, and letae € E be a root off. Becausef is
irreducible,[Q[a] : Q] = deg f = p, and sop|[E : Q] = (G : 1). ThereforeG; contains
an element of order (Cauchy’s theorem, GT 4.13), but the only elements of opdars,
arep-cycles (here we use thatis prime again).

Let o be complex conjugation oB. Theno transposes the two nonreal rootsfdfX )
and fixes the rest. Therefote, C S, contains a transposition andbecycle, and so is the
whole of S,,. O

It remains to construct polynomials satisfying the conditions of the Proposition.

EXAMPLE 4.14. Letp> 5 be a prime number. Choose a positive even integand even
integers
ny <mng <--- < Np_o.

Let f(X) = ¢g(X) — 2, where
g(X) = (X?+m)(X —ny)...(X —n,_a).

When we writef(X) = X? + a; X?~' + --- 4 qa,, then alla; are even, and, =
—(m]]n;) — 2 is not divisible by 4. Hence Eisenstein’s criterion implies tfiak) is
irreducible.

The polynomialg(.X') certainly has exactly two nonreal roots. Its graph crosses-the
axis exactlyp — 2 times, and its maxima and minima all have absolute valie(because
its values at odd integers have absolute valu®). Hence the graph of (X) = g(X) — 2
also crosses the-axis exactlyp — 2 times, and the proposition applies fo
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Finite fields

LetF, = Z/pZ, the field ofp elements. As we noted K1, any other field® of character-
istic p contains a copy off,, namely,{m1lg | m € Z}. No harm results if we identif{,,
with this subfield ofE.

Let £’ be afield of degree overlF,. ThenE hasq = p" elements, and sB™ is a group
of orderq — 1. Hence the nonzero elementsofare rootsX?~! — 1, and all elements of
E (including0) are roots ofX¢ — X. HenceF is a splitting field forX? — X, and so any
two fields withq elements are isomorphic.

PROPOSITION4.15. Every extension of finite fields is simple.

PROOF. ConsiderE D F. ThenE* is a finite subgroup of the multiplicative group of a
field, and hence is cyclic (see Exercise 3); fenerateg > as a multiplicative group, then
certainly £ = F'[(]. O

Now let £’ be the splitting field off (X) = X7 — X, ¢ = p™. The derivativef’'(X) =
—1, which is relatively prime tof(X) (in fact, to every polynomial), and sf(X) has
q distinct roots inE. Let S be the set of its roots. Thes#i is obviously closed under
multiplication and the formation of inverses, but it is also closed under subtraction: if
a? —a=0andb? — b =0, then

(a—b)!=a?—bl=a—0.
HenceS is a field, and s& = E. In particular,FE hasp™ elements.

ProPOSITION4.16. For each powerg = p" there is a fieldF, with ¢ elements. It is
the splitting field ofX¢ — X, and hence any two such fields are isomorphic. Moreover,
IF, is Galois overF, with cyclic Galois group generated by the Frobenius automorphism
o(a) = a>.

PrRoOOF. Only the final statement remains to be proved. The fi¢lds Galois overl,
because it is the splitting field of a separable polynomial. We not (1.4) tRatz?
is an automorphism df,. An element: of IF, is fixed byo if and only if a”? = a, butF,
consists exactly of such elements, and so the fixed fieldois F,. This proves thaF, is
Galois overlff, and that{o) = Gal(F,/F,) (seq 3.p). O

COROLLARY 4.17. Let E be a field withp™ elements. For each divisen of n, m > 0, £
contains exactly one field wigi* elements.

PrROOF. We know thatZ is Galois ovelf, and thatGal(E /F,) is the cyclic group of order
n generated by. The group(c) has one subgroup of ordeym for eachm dividing n,
namely,(c™), and soE has exactly one subfield of degreeover[F, for eachm dividing

n, namely,E‘°"). Because it has degreeoverF,, £ hasp™ elements. O

COROLLARY 4.18. Each monic irreducible polynomigl of degreed|n in F,[X] occurs
exactly once as a factor of”" — X; hence, the degree of the splitting fieldfofs < d.
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PrROOF. First, the factors of{?" — X are distinct because it has no common factor with
its derivative. If f(X) is irreducible of degreé, then f(X) has a root in a field of degree
d overF,. But the splitting field ofX?" — X contains a copy of every field of degree
d overF, with d|n. Hence some root ak?" — X is also a root off (X), and therefore
F(X)|X?" — X. In particular, f divides X*" — X, and therefore it splits in its splitting
field, which has degre¢overF,,. O

ProPOSITION4.19. LetF be an algebraic closure d,. ThenkF contains exactly one field
F,~ for each integern > 1, andF,. consists of the roots of?" — X. Moreover,

Fpm C Fpn <~ m‘n

The partially ordered set of finite subfieldslibfs isomorphic to the set of integens> 1
partially ordered by divisibility.

PrROOF. Obvious from what we have proved. O
ProPOsSITION4.20. The fieldF, has an algebraic closurg.

PROOF. Choose a sequence of integérs- n; < ny, < n3 < ... such that;|n,, for all
i, forexample2 < 2 x 3 <2 x 3 x5 < .... Define the field§,~; inductively as follows:
Fym = F,; Fyniia is the splitting field ofX?**" — X overF,n.. Then,F,. C Fpn. C

Fyns C ---, and we defind® = UF,»,. As a union of fields algebraic ové,, it is again
a field algebraic oveF,. Moreover, every polynomial iff,,[ X] splits inF, and so it is an
algebraic closure df (by[1.44). N

REMARK 4.21. Since thé,.’s are not subsets of a fixed set, forming the union requires
explanation: defin& to be the disjoint union of th&,.; for a,b € S, seta ~ bif a = b in
one of thelF,»; then~ is an equivalence relation, and welet= S/ ~.

Maple factors polynomials module very quickly. The syntax isFactor(f(X))
mod p;”. Thus, for example, to obtain a list of all monic polynomials of degree or 4
overFs;, ask Maple to factoX %% — X,

Finite fields were sometimes caI@cGalois fields,andF, used to be denote@F(q)
(it still is in Maple). Maple contains a “Galois field package” to do computations in finite
fields. For example, it can find a primitive elementiiyr(i.e., a generator far;). To start
it, type: readlib(GF):

Computing Galois groups overQ

In the remainder of this section, | sketch a practical method for computing Galois groups
over Q and similar fields. Recall that for a monic separable polynoria F[X], F}

12From a letter to the Notices of the AMS, February 2008I{p: “full credit should be given to [Galois]
for constructing finite fields in general. In one of the few papers published during his short lifetime, entitled
“Sur la theorie des nombres”, which appeared in the Bulletin des SciencesMatlgues in June 1830,
Galois — at that time not even nineteen years old — defined finite fields of arbitrary prime power order and
established their basic properties, e.g. the existence of a primitive element. So it is fully justified when finite
fields are called Galois fields and customarily denoted:t5(q).”
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denotes a splitting field fof’, andG; = Gal(Fy/F) denotes the Galois group df.
Moreover,GGy permutes the roots,, as, ... of f in Fy:

G C Sym{ay, ag, ... }.
The first result generalizes Propositjon|4.4.

PROPOSITION4.22. Let f(X) be a monic polynomial iti’[ X'] with only simple roots, and
suppose that the orbits @f; acting on the roots of havem,,...,m, elements respec-
tively. Thenf factors asf = f; - - - f,. with f; irreducible of degreen;.

PROOF. Letay,...,a,, m = deg f, be the roots off (X) in Fy. The monic factors of
f(X)in Fy[X] correspond to subsessof {c, ..., o},

SHfSZH(X—Oé)’

aesS

and fs is fixed under the action af’; (and hence has coefficients k) if and only if S
is stable unde6 ;. Therefore the irreducible factors ¢fin F'[X| are the polynomialg's
corresponding to minimal subsefsof {«, ..., «,,} stable undet:;, but these subsets
are precisely the orbits @F ¢ in {«ay, ..., o} O

REMARK 4.23. Note that the proof shows the following: {et;, ..., a,,} = |J O; be the
decomposition of o, . . ., a,,, } into a disjoint union of orbits for the grou@¢; then

=111, fi=1l4co, (X — )

is the decomposition of into a product of irreducible polynomials ifi[.X|.

Now supposé is finite, with p" elements say. The@; is a cyclic group generated
by the Frobenius automorphismn = — z?. When we regard as a permutation of the
roots of f, then distinct orbits of correspond to the factors in its cycle decomposition (GT
4.22). Hence, if the degrees of the distinct irreducible factorsatm,, mo, ..., m,, then
o has a cycle decomposition of type

my+ -+ m, =deg f.

LEMMA 4.24. Let R be a unique factorization domain with field of fractioAsand let f
be a monic polynomial iR[X]. Let P be a prime ideal ink, and letf be the image of
in (R/P)[X]. Assume that neithef nor f has a multiple root. Then the roots;, . . ., a,,
of f lie in some finite extensioR’ of R, and their reductiong; moduloP R’ are the roots
of f. MoreoverG C Gy when both are identified with subgroups®in{ay,...,a,} =

Sym{@y, ..., %}

PROOF. Omitted — see van der Waerden, Modern Algebr&61, (second edition) or ANT
3.43. O

On combining these results, we obtain the following theorem.
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THEOREM4.25 (DEDEKIND). Let f(X) € Z[X] be a monic polynomial of degree, and
let p be a prime such thaf mod p has simple roots (equivalentlp(f) is not divisible
by p). Suppose thaf = [] f; with f; irreducible of degreen;, in F,[X]. ThenG; contains
an element whose cycle decomposition is of type

m=my+---+m, =m.

EXAMPLE 4.26. ConsideX°— X —1. Modulo2, this factors ag X?+ X +1)( X3+ X?+1),
and modulo3 it is irreducible. Hence~, contains(ik)(lmn) and (12345), and so also

((ik)(Imn))* = (ik). ThereforeG; = S; by (4.12).

LEMMA 4.27. A transitive subgroup off C S,, containing a transposition and am — 1)-
cycle is equal td,,.

PROOF. After possibly renumbering, we may suppose the- 1)-cycle is(123...n —
1). Because of the transitivity, the transposition can be transformedinjpsomel <
i < n — 1. Conjugating(in) by (123...n — 1) and its powers will transform it into
(In),(2n),...,(n — 1n), and these elements obviously genergte N

EXAMPLE 4.28. Select monic polynomials of degree f1, /-, f3 with coefficients inZ
such that:
(@) fiisirreducible module;
(b) f, = (degreel)(irreducible of degre@ — 1) mod 3;
(c) f3 = (irreducible of degree)(product of1 or 2 irreducible polys of odd degree) mod
5

We also choos¢, f>, f5 to have only simple roots. Take
J=-15f1+10f, +6f3.

Then
() Gy istransitive (it contains an-cycle becaus¢ = f; mod2);

(i) G/ contains a cycle of length — 1 (because = f, mod3);

(i) Gy contains a transposition (becauge= f; mod 5, and so it contains the prod-
uct of a transposition with a commuting element of odd order; on raising this to an
appropriate odd power, we are left with the transposition). HéhcEs S,,.

The above results give the following strategy for computing the Galois group of an
irreducible polynomialf € Q[X]. Factorf modulo a sequence of primgsot dividing
D(f) to determine the cycle types of the elements:in— a difficult theorem in number
theory, the effective Chebotarev density theorem, says that if a cycle type ocauls in
then this will be seen by looking modulo a set of prime numbers of positive density, and
will occur for a prime less than some bound. Now look up a table of transitive subgroups
of S,, with order divisible byn and their cycle types. If this doesn’t suffice to determine the
group, then look at its action on the set of subsetsfots for some-.

See, Butler and McKayT he transitive groups of degree up to elev@omm. Alge-
bra 11 (1983), 863—911. This lists all transitive subgroups,9fn < 11, and gives the
cycle types of their elements and the orbit lengths of the subgroup acting orstte of
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roots. With few exceptions, these invariants are sufficient to determine the subgroup up to
isomorphism.

Maple V can compute Galois groups for polynomials of degre® over Q. To learn
the syntax, type?galois; .

See also, Soicher and McKaypmputing Galois groups over the rationals Number
Theory, 20 (1985) 273-281.

Exercises 14-20

14*. Find the splitting field ofX™ — 1 € F,[X].
15*. Find the Galois group ok* — 2X3 — 8X — 3 overQ.
16*. Find the degree of the splitting field 6f® — 2 overQ.

17*. Give an example of a field extensidfy F' of degreel such that there does not exist a
field M with F C M C E,[M : F] = 2.

18. List all irreducible polynomials of degreeoverF; in 10 seconds or less (there are
112).

19. “It is a thought-provoking question that few graduate students would know how to
approach the question of determining the Galois group of, say,

X0 4+2X% +3X* +4X3 +5X%2+6X + 7.7

[over Q).
(a) Canyou find it?
(b) Can you find it without using the “galois” command in Maple?

20*. Let f(X) = X°+aX +b,a,b € Q. Show thaiG; ~ D; (dihedral group) if and only
if
(@) f(X) isirreducible inQ[X], and
(b) the discriminanD(f) = 4*a® + 5°b* of f(X) is a square, and
(c) the equatiorf(X) = 0 is solvable by radicals.
Additional exercise: Show that a polynomiaf of degreen = [+, p/" is irreducible

overF, if and only if ged(f(z), 27" — 2) = 1 for all 4.
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5 Applications of Galois theory

In this section, we apply the fundamental theorem of Galois theory to obtain other results
about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields/F is simple if £ = F'[a] for some element of
E. Such anx is called goprimitive elementof £. We shall show that (at least) all separable
extensions have primitive elements.

Consider for exampl®[v/2, v/3]/Q. We know (see Exercise 13) that its Galois group
overQ is a4-group(o, 7), where

(V2= (e
Vi= V3 3= VB

Note that
o(V2+V3) = —V2+3,
T<\/§+\/§) = \/——\/g,
(o) (V2+V3) = —V2-V3

These all differ fromy/2 + /3, and so only the identity element 6fal(Q[v/2, v/3]/Q)
fixes the elements d®[v/2 +/3]. According to the fundamental theorem, this implies that
V2 + /3 is a primitive element:

Q[V2,V3] =Q[V2 + v3].

It is clear that this argument should work much more generally.
We say that an elementalgebraic over a field” is separableover F' if its minimum
polynomial overF’ has no multiple roots.

THEOREMb.1. Let E = Flay, ..., a,] be a finite extension df, and assume that,, ..., «,
are separable ovefF’ (but not necessarilyy;). Then there is an elemente E such that
E = F[yl.

ProOOF. For finite fields, we proved this ifi (4.]l5). Hence we may assénie be infinite.
It suffices to prove the statement for= 2. Thus letE = F[a, 3] with 3 separable oveF'.
Let f andg be the minimum polynomials af and( over F'. Leta; = «, ..., a, be the
roots of f in some big field containing’, and lets, = 3, 5, ..., 3; be the roots of. For
Jj # 1, B; # (1, and so the the equation

a; + XBj = a1 + Xf,

has exactly one solution, namely, = ﬁ. If we choose a <€ F different from any of
J

these solutions (using that is infinite), then

a; +cf; #a+cfunlessi=1=j.
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Let v = a + ¢8. Then the polynomialg(X) and f(v — ¢X) have coefficients in
F[v][X], and have? as a root:

9(8) =0, f(y—cB)= fla) =0.

In fact, 3 is their only common root, because we chesso thaty — ¢3; # «a; unless
1 =1 =j. Therefore

ged(g(X), f(y — X)) = X — 8.
Here we have computed tlyed in some field splittingf g, but we have seen (Proposition
[2.10) that theged of two polynomials has coefficients in the same field as the coefficients
of the polynomials. Hencg € F[y], and this implies thatr = v — ¢ also lies inF[y].
We have shown that'|«, 3] = F[y]. O

REMARK 5.2. Assumé to be infinite. The proof shows thatcan be chosen to be of the
form
vy=o1+cag+ -+, ¢ €F

If £ is Galois overF, then an element of this form will be a primitive element provided
it is moved by every element @kal( £/ F') exceptl. These remarks make it very easy to
write down primitive elements.

Our hypotheses are minimal:tifo of theo’s are not separable, then the extension need
not be simple. Before giving an example to demonstrate, we need another result.

PROPOSITIONS.3. Let E = F[y] be a simple algebraic extension f Then there are
only finitely many intermediate fieldd,

FCMCE.

PROOF. Let M be such afield, and lgt X ) be the minimum polynomial of over M. Let
M’ be the subfield oF' generated ovef’ by the coefficients of(.X). Clearly M’ C M,
but (equally clearly)(X) is the minimum polynomial of over M’. Hence

[E:M'] =degg=[F: M|,

and soM = M’ — M is generated by the coefficients g(fX).

Let f(X) be the minimum polynomial of over F'. Theng(X) dividesf(X) in M [X],
and hence also iiv[X]. Therefore, there are only finitely many possiple, and conse-
guently only finitely many possibl&/’s. O

REMARK 5.4. (a) Note that the proof in fact gives a description of all the intermediate
fields: each is generated ovErby the coefficients of a factan( X) of f(X) in E[X]. The
coefficients of such a(.X) are partially symmetric polynomials in the roots ffX) (that
is, fixed by some, but not necessarily all, of the permutations of the roots).

(b) The proposition has a converse:Fifis a finite extension of' and there are only
finitely many intermediate fieldd/, FF ¢ M C F, thenFE is a simple extension of’
(see Dummit and Foote 1991, p508). This gives another proof of Théorém 5.1 in the case
that £ is separable oveF’, because Galois theory shows that there are only finitely many
intermediate fields in this case (the Galois closurezobver ' has only finitely many
intermediate fields).



5 APPLICATIONS OF GALOIS THEORY 52

ExamMpPLE 5.5. The simplest nonsimple algebraic extensio®(iX,Y) D k(X?,Y?),
wherek is an algebraically closed field of characteristic Let F' = k(X?,Y?). For
anyc € k, we have

k(X,Y)=F[X,Y]DF[X+c¢]DF

with the degree of each extension equagb.tdf
FIX+c¢Y]|=F[X+Y], c#/d,

then F'[X + ¢Y] would contain bothX andY’, which is impossible becausgé(X,Y) :
F] = p*. Hence there are infinitely many distinct intermediate fi@is.

Fundamental Theorem of Algebra

We finally prove the misnamfundamental theorem of algebra.
THEOREMS.6. The fieldC of complex numbers is algebraically closed.

ProOF. DefineC to be the splitting field of{* + 1 € R[X], and let; be a root ofX* + 1
in C; thusC = R[i]. We have to show (s¢e 1]44) that evgyX') € R[X] has a root irC.

The two facts we need to assume abRure:

— Positive real numbers have square roots.

— Every polynomial of odd degree with real coefficients has a real root.
Both are immediate consequences of the Intermediate Value Theorem, which says that
a continuous function on a closed interval takes every value between its maximum and
minimum values (inclusive). (Intuitively, this says that, unlike the rationals, the real line
has no “holes”.)

We first show that every element©fhas a square root. Write= a-+bi, witha, b € R,
and choose, d to be real numbers such that

2 (a+va?+b?) P2 (—a+Va?+b?)
- 2 ’ B 2 '

Thenc? — d* = a and(2cd)? = b?. If we choose the signs efandd so thated has the
same sign as, then(c + di)* = o andy/a = ¢ + di.

Let f(X) € R[X], and letE be a splitting field forf (X)(X? + 1) — we have to show
that E = C. SinceR has characteristic zero, the polynomial is separable, antl &0
Galois overR. Let G be its Galois group, and léf be a Sylow2-subgroup of.

137ariski showed that there is even an intermediate fidldhat is not isomorphic td(X,Y’), and Piotr
Blass showed in his thesis (University of Michigan 1977), using the methods of algebraic geometry, that there
is an infinite sequence of intermediate fields, no two of which are isomorphic.

14Because it is not strictly a theorem in algebra: it is a statement @aeutose construction is part of
analysis (or maybe topology). In fact, | prefer the proof based on Liouville’s theorem in complex analysis to
the more algebraic proof given in the text:fifz) is a polynomial without a root ift, then f(z)~! will be
bounded and holomorphic on the whole complex plane, and hence (by Liouville) constant. The Fundamental
Theorem was quite a difficult theorem to prove. Gauss gave a proof in his doctoral dissertation in 1798 in
which he used some geometric arguments which he didn't justify. He gave the first rigorous proof in 1816.
The elegant argument given here is a simplification by Emil Artin of earlier proofs.
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Let M = EM. ThenM is of odd degree oveR, andM = R[a] somea (Theoren) 5.1).
The minimum polynomial ofr overR has odd degree, and so has a rodRirlt therefore
has degreé, and soM = R andG = H.

We now have thaGal(E/C) is a 2-group. If it is# 1, then it has a subgroufy of
index 2 (GT 4.15). The fieldZ" has degre& over C, and can therefore be obtained by
extracting the square root of an element®{see[ 3.244), but we have seen that all such
elements already lie i€. HenceE”™ = C, which is a contradiction. Thus = C. O]

COROLLARY 5.7. (a) The fieldC is the algebraic closure dk.
(b) The set of all algebraic numbers is an algebraic closur@of

PROOF. Part (a) is obvious from the definition of “algebraic closufe™ (1.43), and (b) fol-
lows from Corollary 1.4p. O

Cyclotomic extensions

A primitive n'" root of 1 in F is an element of ordet in F*. Such an element can exist
only if F' has characteristi¢ or characteristip not dividingn.

PROPOSITIONS.8. Let F' be a field of characteristié or characteristicp not dividingn.
Let £ be the splitting field oX™ — 1.
(a) There exists a primitive™ root of 1 in E.
(b) If ¢ is a primitiven' root of 1 in E, thenE = F[(].
(c) The fieldZ is Galois overF’; for eacho € Gal(E/F), thereis ani € (Z/nZ)* such
thato¢ = ¢* for all ¢ with (™ = 1; the mapo — [i] is an injective homomorphism

Gal(E/F) — (Z/nZ)".

PROOF. (a) The roots ofX™ — 1 are distinct, because its derivativé&("~! has only zero
as a root (here we use the condition on the characteristic), afdcemtainsn distinctn
roots of1. Then' roots of1 form a finite subgroup of£*, and so (see Exercise 3) they
form a cyclic group. Any generator will have orderand hence will be a primitive™ root
of 1.

(b) The roots ofX™ — 1 are the powers af, and F'[(] contains them all.

(c) If ¢, is one primitiven root of 1, then the remaining primitive™ roots of1 are
the elements, with i relatively prime ton. Since, for any automorphism of E, o(; is
again a primitiven™ root of 1, it equals¢; for somei relatively prime ton, and the map
o — i mod nisinjective becaus§ generate® overF'. It obviously is a homomorphism.
Moreover, for any othen' root of 1, ¢ = (I,

ol = (0¢)™ = ¢ = (" O

The mapo — [i]: Gal(F[¢]/F) — (Z/nZ)* need not be surjective. For example, if
F = C, thenitsimage i1}, and if i = R, itis either{[1]} or {[—1], [1]}. On the other
hand, whem = p is prime, we saw in[(1.41) tha®[¢] : Q] = p — 1, and so the map is
surjective. We now prove that the map is surjective fonallhenF' = Q.
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The polynomialX™ — 1 has some obvious factors @[ .X], namely, the polynomials
X — 1 for anyd|n. The quotient ofX™ — 1 by all these factors fod < n is called then™"
cyclotomic polynomiakp,,. Thus

¢, =]J(X-=¢)  (product over the primitive." roots of1).

It has degreev(n), the order of(Z/nZ)*. Since every™ root of 1 is a primitived™ root
of 1 for exactly oned dividing n, we see that

X" —1=]]®ux).

dn
For example®, (X) = X — 1, ®5(X) = X + 1, 3(X) = X> + X + 1, and

X6 1 )
X = oy anoerx sy XL

This gives an easy inductive method of computing the cyclotomic polynomials. Alterna-
tively ask Maple by typing:

with(numtheory);

cyclotomic(n,X);

BecauseX™ — 1 has coefficients itZ and is monic, every monic factor of it i@[X]
has coefficients ifZ (1.14). In particular, the cyclotomic polynomials lieZi.X .

LEMMA 5.9. Let F' be a field of characteristi@ or p not dividingn, and let{ be a primitive
n root of 1 in some extension field. The following are equivalent:
(a) then™ cyclotomic polynomiad,, is irreducible;
(b) the degreeF|[(] : F] = p(n);
(c) the homomorphism
Gal(F[C]/F) — (Z/nZ)*

is an isomorphism.

PROOF. Because is a root of®,,, the minimum polynomial of divides®,,. It is equal to
itifand only if [F'[(] : F] = ¢(n), which is true if and only if the injectioal(F'[C] / F') —
(Z/nZ)* is onto. O

THEOREM5.10. Then™ cyclotomic polynomia®,, is irreducible inQ[X].

PROOF. Let f(X) be a monic irreducible factor @, in Q[X]. Its roots will be primitive
n' roots of 1, and we have to show they includdi primitive n'" roots of 1. For this it
suffices to show that

¢ arootoff(X) = (" arootof f(X) for all i such thatged(i,n) = 1.
Such ani is a product of primes not dividing, and so it suffices to show that

¢arootoff(X) = (? aroot of f(X) for all primesp t n.
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Write
P, (X) = f(X)g(X).

Propositior] 1.14 shows thgt(X') and g(X) lie in Z[X]. Suppose€ is a root of f, but
that for some prime not dividing n, (? is not a root off. Then(? is a root ofg(X),
g(¢?) = 0, and sc( is a root ofg(X?). As f(X) andg(X?) have a common root, they have
a nontrivial common factor i@[X] (2.10), which automatically lies i&i[X] (1.14). Write
h(X) +— h(X) for the mapZ[X] +— F,[X], and note that

gedy iy (f(X), 9(XP)) #1 = gedy, 1 (f(X), g(XP)) # 1.

But g(X?) = g(X)? (use the mod p binomial theorem and tha# = « for all « € F,),

and sof (X ) andg(X) have a common factor. Henég” — 1, when regarded as an element
of F,[X], has multiple roots, but we saw in the proof of Proposi 5.8 that it doesn't.
Contradiction. O

REMARK 5.11. This proof is very old — in essence it goes back to Dedekind in 1857 —
but its general scheme has recently become popular: take a statement in characteristic zero,
reduce module (where the statement may no longer be true), and exploit the existence of
the Frobenius automorphism+— «” to obtain a proof of the original statement. For ex-
ample, commutative algebraists use this method to prove results about commutative rings,
and there are theorems about complex manifolds that bialyebeen proved by reducing
things to characteristig.
There are some beautiful and mysterious relations between what happens in character-

istic 0 and in characteristie. For example, lef (X, ..., X,,) € Z[ X1, ..., X,,]. We can

(a) look at the solutions of = 0 in C, and so get a topological space;

(b) reduce mog, and look at the solutions gf = 0 in ..
The Weil conjectures (Weil 1949; proved in part by Grothendieck in the 1960’s and com-
pletely by Deligne in 1973) assert that the Betti numbers of the space in (a) control the
cardinalities of the sets in (b).

THEOREM 5.12. The regularn-gon is constructible if and only if = 2*p, - - - p, where
thep; are distinct Fermat primes.

PrRoOOF. The regularn-gon is constructible if and only ios 27” (or ¢ = e*™/™) is con-

structible. We know thaf|[¢] is Galois overQ, and so (according fo 1.37 ahd 3.23)s
constructible if and only ifQ[(] : Q] is a power of2. But (see GT 3.10)

p(n) =[P, n=]]p"",
pln
and this is a power df if and only if n has the required form. ]

REMARK 5.13. The final section of GaussBjsquisitiones Arithmeticaél801) is titled
“Equations defining sections of a Circle”. In it Gauss proves thahtheoots of1 form a
cyclic group, thatX™ — 1 is solvable (this was before the theory of abelian groups had been
developed, and before Galois), and that the reguigon is constructible when is as in
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the Theorem. He also claimed to have proved the converse staténienis leads some
people to credit him with the above proof of the irreducibilitydaf, but in the absence of
further evidence, I'm sticking with Dedekind.

Independence of characters

THEOREM5.14 (DEDEKIND’S THM ON THE INDEPENDENCE OF CHARACTERE Let F
be a field, and let;G be a group (monoid will do). Then any finite seti, ..., xm} of
homomorphismé& — F* is linearly independent over, i.e.,

Zaixi:()(asafunctiorGaF) — a;=0,...,a,=0.

PROOF. Induction onm. Form = 1, it's obvious. Assume it forn — 1, and suppose that,
for some se{x, ..., xm} Of homomorphism&: — F* anda; € F,

arx1(x) + agx2(x) + - + amxm(z) =0 forallz € G.

We have to show that the, are zero. Asy; andy, are distinct, they will take distinct
values on some € G. On replacinge with gz in the equation, we find that

a1x1(g9)x1(x) + asx2(g9)x2(x) + -+ + amXm(9)xm(x) =0 forallz € G.

On multiplying the first equation by, (¢) and subtracting it from the second, we obtain
the equation

dyxz + F apxm =0, a;=ai(xi(9) — x1(9))-
The induction hypothesis now shows that= 0 for all ¢ > 2. Sincex,(g) — x1(g) # 0,

we must havei, = 0, and the induction hypothesis shows that all the remainijisgare
also zero. O

COROLLARY 5.15. Let F; and F;, be fields, and let, ..., 0, be distinct homomorphisms
F, — F,. Thenoy, ..., 0, are linearly independent ovér;.

PROOF. Apply the theorem to; = ;| F*. O
COROLLARY 5.16. Let F be a finite separable extension©fof degreen. Letay, ..., a,,
be a basis forF over F', and letoy, . . ., o, be distinctF’-homomorphisms fromy' into a

field 2. Then the matrix whosg, j)™-entry iso;q; is invertible.

PROOF. If not, there exist; € Qsuchthad " c;o;(;) = Oforall j. Butd " c;o;: E —
Q is F-linear, and so this implies that" , ¢;0;(«) = 0 for all & € E, which contradicts
Corollary[5.15. O

Whenevern — 1 involves prime factors other thahy we are always led to equations of higher de-
gree....WE CAN SHOW WITH ALL RIGOR THAT THESE HIGHER-DEGREE EQUATIONS CANNOT
BE AVOIDED IN ANY WAY NOR CAN THEY BE REDUCED TO LOWER-DEGREE EQUATIONS. The
limits of the present work exclude this demonstration here, but we issue this warning lest anyone attempt to
achieve geometric constructions for sections other than the ones suggested by our theory (e.g. sections into
7,9, 11, 13, 19, etc. parts) and so spend his time uselessly.”siBdb.
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The normal basis theorem

DEFINITION 5.17. LetE be a finite Galois extension @f with Galois group. A normal
basisfor E is an F-basis of the form{ca | 0 € G}, i.e., anF-basis consisting of the
conjugates of an elementof E.

THEOREMb5.18 (NORMAL BASIS THEOREM). Every Galois extension has a normal basis.

PROOF. Let £/F be a Galois extension with Galois grogp We give two proofs, the
first of which assumes thét is infinite and the second thétis cyclic. Since every Galois
extension of a finite field is cycli¢ (4.1.6), this covers all cases.

Assume that is infinite. This has the consequence thatf i€ F[X;,...,X,,] has
the property thaf (a,,...,a,) =0forallay,...,a, € F,thenf(Xy,..., X,,) = 0. We
prove this by induction om. Form = 1 it follows from the fact that a nonzero polynomial
in one variable has only finitely many roots. Far> 1, write

f = zci(Xlu s 7mel)X7in-
For anym - 1_tup|e!al7 ceey -1,

f(alv s 7am—17Xm>

is a polynomial inX,,, having every element of as a root. Therefore, each of its coeffi-

cients is zerog;(aq, . .. ,a,—1) = 0 for all 2. Since this holds for alas, ..., an,_1), the
induction hypothesis shows that X1, ..., X,, 1) is zero.
Now number the elements 6f aso, ..., 0, (With oy = 1).

Let f(Xy,...,X) € F[Xy,...,X,,] have the property that
flowa,...,ona) =0
forall o € E. Forabasisy,...,«a, of E overF, let

9(Y1, e 7Ym) = f(Z?ilYmai, Z?;Yz‘ﬁaia .. )

The hypothesis oif implies thatg(a,, ..., a,) = 0forall a; € F, and sog = 0. But the
maitrix (o;c;) is invertible ). Since is obtained fromf by an invertible linear change
of variables,f can be obtained from by the inverse linear change of variables. Therefore
it also is zero.

Write X; = X (0;), and letA = (X (0,0/)), i.e., A is them x m matrix havingXj, in
the (i, 7)™ place ifo;0; = o}. Thendet(A) is a polynomial inXy, . .., X,,, say,det(A) =
f(Xy,...,X,,). Clearly, f(1,0,...,0) is the determinant of a matrix having exactly dne
in each row and each column and its remaining entridgence the rows of the matrix are
a permutation of the rows of the identity matrix, and so its determinant idn particular,

f is not identically zero, and so there existsare E* such thatf(o,q,...,0nq) (=
det(o;0;c0)) is nonzero. We shall show thét; o} is a normal basis. For this, it suffices to
show thatr;« are linearly independent ovér. Suppose

Y ajoia =0

j=1
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for somea; € F'. On applyingsy, ..., 0, successively, we obtain a systemmefequations
ZCLJ'O'Z'O'J'O( =0

in them “unknowns”a;. Because this system of equations is nonsingulag tfseare zero.
This completes the proof of the lemma in the case that infinite.

Now assume that’ is cyclic generated, say, by an elemegtof ordern. Then[E :
F] = n. The minimum polynomial o, regarded as an endomorphism of thesector
spaceF is the monic polynomial inF'[X] of least degree such th&t(c,) = 0 (as an
endomorphism of?). It has the property that it divides every polynomialX) € F|[X]
such that)(oy) = 0. Sinces) = 1, P(X) dividesX™ — 1. On the other hand, Dedekind’s
theorem on the independence of chara05.14) impliegtthat . .., o) " are linearly
independent oveF’, and sodeg P(X) > n — 1. We conclude thaP(X) = X" — 1.
Therefore, as a’[ X |-module with.X acting assy, E is isomorphic toF' [ X|/(X" — 1).
For any generatar of £ as aF'[X]-module,a, oga, . .., 00a" ! is aF-basis forE. [

Hilbert's Theorem 90.

Let G be a finite group. AG-moduleis an abelian group/ together with an action af7,
i.e., amaps x M — M such that

@) o(m+m')y=om+om'foralec e G,m,m € M,

(b) (o7)(m) =o(rm)forallo,7 € G, m € M;

(¢) Im =mforallm e M.
Thus, to give an action aff on M is the same as to give a homomorphi6hm— Aut(M)
(automorphisms o/ as an abelian group).

ExAamMPLE 5.19. LetE be a Galois extension df, with Galois groups. Then(E, +) and
(E*,-) areG-modules.
Let M be aG-module. Acrossed homomorphisns a mapf: G — M such that

flor) = f(o)+of(r)forallo, T € G.
Note that the condition implies thag{1) = f(1-1) = f(1) + f(1), and sof(1) = 0.

EXAMPLE 5.20. (a) Letf: G — M be a crossed homomorphism. For ang G,

f(0®) = f(o) +af(o),
f(0®) = flo-0%) = flo) +of(o)+0°f(o)

flo") = flo)+of(o)+ -+ 0" f(o).

Thus, if G is a cyclic group of ordern generated by, then a crossed homomorphism
f: G — M is determined by its value, say, ono, andz satisfies the equation

r+or+--+0"tr=0, ™*
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Conversely, ifr € M satisfies (*), then the formulag(c’) = =z + oz + --- + o'z
define a crossed homomorphisim G — M. Thus, for a finite grougs = (o), there is a
one-to-one correspondence

{crossed homg: G — M} paciy {z € M satisfying (*)}.

(b) For anyx € M, we obtain a crossed homomorphism by putting
flo) =0x — =, allo € G.

Such a crossed homomorphism is callgatiacipal crossed homomorphism

(c) If G acts trivially onM, i.e.,om = m forall o0 € G andm € M, then a crossed
homomorphism is simply a homomorphism, and there are no nonzero principal crossed
homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed homomor-
phism, and the sum and difference of two principal crossed homomorphisms is again prin-
cipal. Thus we can define

B {crossed homomorphisths
~ {principal crossed homomorphisins

HY(G, M)

(quotient abelian group). The cohomology groupd(G, M) have been defined for all
n € N, but since this was not done until the twentieth century, it will not be discussed in
this course.

EXAMPLE 5.21. Letr: X — X be the universal covering space of a topological spégce

and letl’ be the group of covering transformations. Under some fairly general hypotheses,
al-module M will define a sheafM on X, and H' (X, M) = H'(T', M). For example,
when M = Z with the trivial action ofT, this becomes the isomorphisfi' (X, Z) =
HY(T',Z) = Hom(T', Z).

THEOREM 5.22. Let E be a Galois extension df with groupG; then HY(G, E*) = 0,
i.e., every crossed homomorphigim— E* is principal.

PROOF. Let f be a crossed homomorphisth — E*. In multiplicative notation, this
means,

flor) = f(o)-o(f(1)), o,7€q,

and we have to find @ € E* such thatf(c) = = for all o € G. Because th¢f(r) are
nonzero, Corollary 5.15 implies that

Yoecf(T)T: E—FE

is not the zero map, i.e., there existsaag FE such that

8L f(r)ra #£0.
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But then, foro € G,

of =2 reqo(f(7)) - o7(a)
=2 ecf(0)7 floT) - o7(a)
= f(0)" XeafloT)or(a),
which equalsf (o)~ 3 because, as runs overG, so also doest. Thereforef(o) = %
and we can takg = vy~ L. O
Let £ be a Galois extension o with Galois groupG. We define thenorm of an

elementn € E to be
Nma =[] o0

Fort € G,
T(Nma) = [[,co70a = Nma,

and soNm « € F. The map
ar— Nma: B — F*

is a obviously a homomorphism.

EXAMPLE 5.23. The norm ma@* — R* is a — |a?> and the norm ma@[v/d]* — Q*
isa+ bvVd— a® — db?.

We are interested in determining the kernel of the norm map. Cleatlsibf the form
%, thenNm(«) = 1. Our next result show that, for cyclic extensions, all elements with
norm1 are of this form.

COROLLARY 5.24 (HLBERT'S THEOREM90). ﬁ_etE be a finite cyclic extension df
with Galois group(o); if Nmpg,r o = 1, thena = 3/03 for somes € E.

PROOF. Letm = [E : F]. The condition ony is thata - oo - - - 0™ o = 1, and so[(5.20a)
there is a crossed homomorphigm(c) — E* with f(o) = . Theorenj 5.22 now shows
that f is principal, which means that there igavith f(o) = /0. O

Cyclic extensions.

We are now able to classify the cyclic extensions of degreta field F' in the case thak’
containsn n" roots of1.

THEOREM5.25. Let F' be a field containing a primitive'™ root of 1.
(a) The Galois group oX™ — a is cyclic of order dividingn.
(b) Conversely, ifE is cyclic of degree: over F', then there is an elemept € E such
that E = F[3] and 3" € F; henceF is the splitting field ofX™ — 5".

®This is Satz 90 in Hilbert's book, Theorie der Algebraischen Zatgkr, 1897. The theorem was discov-
ered by Kummer in the special case@f(,]/Q, and generalized to Theor.22 by E. Noether. Theorem
[5.23, as well as various vast generalizations of it, are also referred to as Hilbert's Theorem 90.

For an illuminating discussion of Hilbert's book, see the introduction to the English translation (Springer
1998) written by F. Lemmermeyer and N. Schappacher.
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PROOF. (a) If a is one root ofX™ — a, then the other roots are the elements of the foam
with ¢ ann ™ root of 1. Hence the splitting field ok ™ — a is Fo]. The mapr — 22 is an
injective homomorphism frortral(F'[«]/ F') into the cyclic group(().

(b) Let¢ be a primitiven'" root of 1 in F, and lets generateGal(£/F). ThenNm ¢ =
¢" = 1, and so, according to Hilbert's Theorem 90, there is an element~ such that
o3 = (3. Thena'3 = ('3, and so only the identity element 6fal( £/ F) fixes 3 — we
conclude by the fundamental theorem of Galois theory that F'[/5]. On the other hand
of™ = ("p" = [", and sqs" € F. O

REMARK 5.26. (a) Assumé’ contains a primitivex'" root of 1. Then, two cyclic extension
Flax] andF[bx] of F are isomorphic if and only i, andb generate the same subgroup of
F*/F~m,

(b) The polynomialX™—a, n > 2, isirreducible inF'[ X | under the following condition:
a is not ap™™ power for anyp dividing n, and, if4|n, thena ¢ —4F*. See Lang, Algebra,
Addison-Wesley, 1965, VIII§9, Theorem 16.

(c) If F has characteristig (hence has np'" roots of1 other thanl), thenX? — X —a
is irreducible inF[X] unlessa = b” — b for someb € F, and when it is irreducible, its
Galois group is cyclic of ordey (generated by — « + 1 wherea is a root). Moreover,
every extension of” which is cyclic of degree is the splitting field of such a polynomial.

REMARK 5.27 (KUMMER THEORY). Theorenj 5.25 and Remdrk 5/ 26a classify the cyclic
extensions of” ordern in the case thaF contains a primitive: root of 1. Under the same
assumption ort’, it is possible to extend this to a classification of the Galois extensions of
F with abelian Galois group of exponent(i.e., with Galois group a quotient ¢%/nZ)"
for somer).

Let £ be such an extension éf, and let

S(E) = {a € F* | a becomes an'" power inE}.

ThenS(F) is a subgroup of™* containingF*", and the mapy — S(F) defines a one-
to-one correspondence between the abelian extensiafiobexponent: and the groups
S(E),

F* > S(E)D> F*,
such that(S(E) : F*") < co. The field £ is recovered fromf(E) as the splitting field
of [[(X™ — a) (product over a set of representatives $§~) / F'*™). Moreover, there is a
perfect pairing

oa S(E)
a Fxn
In particular,[E : F] = (S(E) : F'*™). (Cf. Exercise 5 for the case= 2.)

(a,0) x Gal(E/F) — u, (group ofn' roots of1).

Proof of Galois’s solvability theorem

LEMMA 5.28. Let f € F[X] be separable, and |’ be an extension field df. Then the
Galois group off as an element of’[ X ] is a subgroup of that of as an element af [ X].



5 APPLICATIONS OF GALOIS THEORY 62

PROOF. Let £’ be a splitting field forf over F’, and leta, . . ., «,,, be the roots off (X)
in E'. ThenE = Flay, ..., oy, is @ splitting field off over F'. Any element ofGal(E’/F")
permutes the; and so map#’ into itself. The map — o|F' is aninjectionGal(E'/F') —
Gal(E/F). O

THEOREM5.29. Let F' be a field of characteristio. A polynomial inF'[X] is solvable if
and only if its Galois group is solvable.

PROOF. «=: Let f € F[X] have solvable Galois groufi;. Let F' = F[¢] where( is a

primitive n™ root of 1 for some largex — for examplen = (deg f)! will do. The lemma
shows that the Galois group of f as an element of’'[.X| is a subgroup of+;, and hence
is also solvable (GT 6.6a). This means that there is a sequence of subgroups

G=GyD>G D DGp1DG,={1}

such that eacld’; is normal inG;_; andG,_,/G; is cyclic. LetE be a splitting field of
f(X) overF’, and letF; = E“. We have a sequence of fields

FCF[({l=F=FCckhCFKcC---Ck,=F

with F; cyclic overFj_;. Theore5b shows that = F;_;[«;] with aEF“Fi‘l] € F,_4,
eachi, and this shows that is solvable.

—: It suffices to show thaty; is a quotient of a solvable group (GT 6.6a). Hence it
suffices to find a solvable extensighof F such thatf (X) splits in E[X].

We are given that there exists a tower of fields

F=FKCFCFC---Ck,

such that
(@) F; = Fii[ol, o' € Fiq;
(b) F, contains a splitting field foy.
Letn =r;---r,, and le be a field Galois ovef’ and containing (a copy of),, and
a primitive ™ root ¢ of 1. For example, choose a primitive elemerfor F,, /F (se),
and take to be a splitting field ofy (X ) (X" — 1) whereg(X) is the minimum polynomial
of v overF.
Let G be the Galois group of?/F, and letE be the Galois closure af),[(] in Q.
According to a)E is the composite of the fieldsF;,[(], o € G, and so itis generated
over I’ by the elements

Coan, Q.o Qi OO, o, OOy, O Q- .
We adjoin these elements foone by one to get a sequence of fields
FCF[]CcF[¢,ayC---CF CF'Cc---CE

in which each fieldF” is obtained from its predecessét by adjoining anr™" root of
an element off” (r = ry,...,7,, Or n). According to [(5.8) and (5.25a), each of these
extensions is cyclic, and 96/ I is a solvable extension. N
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The general polynomial of degreen

When we say that the roots of
aX?*4+bX +c¢

are
—b = Vb? — 4ac
2a
we are thinking oti, b, c as variables: for any particular valueswb, ¢, the formula gives
the roots of the particular equation. We shall prove in this section that there is no similar
formula for the roots of the “general polynomial” of degree.
We define theyeneral polynomial of degree to be

fX)=X"—t; X" oo (1), € Flt1, ..., t,][X]

where the; are variables. We shall show that, when we regaagd a polynomial inX” with
coefficients in the field"(¢,,...,t,), its Galois group isS,. Then Theorerh 5.29 proves
the above remark (at least in characteristic zero).

Symmetric polynomials

Let R be a commutative ring (with). A polynomial P(X1, ..., X,,) € R[Xy,...,X,]is
said to besymmetricif it is unchanged when its variables are permuted, i.e., if

P(Xoays - Xom)) = P(X1,...,X,), aloels,.

For example

o= 2.X =Xi+Xo+--+ X,

P2 = Zi<sz‘Xj = X1 Xo+ Xa X5+ + X0 X + Xo X3+ + X1 X,
b3 = Zi<]’<k XZX]Xk’a = X1X2X3 + -

Dr = Zi1<---<iT X“XZT

P = XiXo--- X,

are all symmetric becaugeis the sum o&ll monomials of degreemade up out of distinct
X;'s. These particular polynomials are called #iementary symmetric polynomials

THEOREM 5.30 (SYMMETRIC POLYNOMIALS THEOREM). Every symmetric polynomial
P(X3,...,X,)in R[Xy,..., X,] is equal to a polynomial in the elementary symmetric poly-
nomials with coefficients iR, i.e., P € R[p1, ..., pn].

PrROOF. We define an ordering on the monomials in tigby requiring that
XiXe. .. Xin> XP X X

if either
11+22++ln>j1+j2++jn
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or equality holds and, for somg
Z.1 = j17 s 77:s = j87 bUtierl > js+1~

For example,
X1 X5X5 > X1 X5 X3 > X1 XXz

Let X* ... X* be the highest monomial occurring iwith a coefficient: # 0. Because
P is symmetric, it contains all monomials obtained frogj’ - - - XFkn by permuting the
X's. Hencek; > ky > -+ > k.
The highest monomial ip; is X - - - X;, and it follows that the highest monomial in

pit - pinis

Xii1+d2+---+an§lz+'"+dn . Xg". (1)
Therefore the highest monomial (X1, ..., X,) — cpf' " ph2~Fs ... pkn s strictly less
than the highest monomial iR( X1, ..., X,,). We can repeat this argument with the poly-
nomial on the left, and after a finite number of steps, we will arrive at a representation of
as a polynomial inpy, . .., p,. H

Let f(X) = X"+ a; X" ' +--- + a, € R[X], and suppose that splits over some
ring S containingR:
fX) =TI (X — ), € S.

Then
ar = —pi(ay,...,an), az=pa(ar,..., o), ..., G =Fp(ai,..., ap).

Thus theelementarysymmetric polynomials in the roots ¢f(X) lie in R, and so the
theorem implies thaevery symmetric polynomial in the roots of(X) lies in R. For
example, the discriminant

of f liesinR.

Symmetric functions

THEOREMS5.31 (SYMMETRIC FUNCTIONS THEOREM. WhenS,, actsont = F/(X3, ..., X,,)
by permuting theX;’s, the field of invariants i§'(p1, ..., pn).

PROOF. Let f € F(X4,...,X,) be symmetric (i.e., fixed by,). Setf = g/h, g,h €
F[Xy,...,X,]. The polynomiald? =[] .4 ohandH f are symmetric, and therefore lie
in Fpy,...,ps) (5.30). Hence their quotient= H f/H liesin F(p1,...,pn)- O

COROLLARY 5.32. The fieldF' (X1, ..., X,,) is Galois overF'(py, ..., p,) with Galois group
S, (acting by permuting the(;).

PROOF. We have shown that'(py, . ..,p,) = F(Xi,..., X,)°, and so this follows from

@.10). N
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The general polynomial of degreen
THEOREM5.33. The Galois group of the general polynomial of degree S,,.

PROOF. Let f(X) be the general polynomial of degree
f(X)=X"—t X" 4 4 (=1)", € Flty, ..., t,][X].
If we can show that the map
tiv— pi: Flt1, ..., ty] — Fp1,...,pn]

is injective (i.e., thep; are algebraically independent over see p7[7), then it will extend
to an isomorphism
F(ti, ... tn) = F(p1, ... pn)

sendingf(X) to
g X)=X"—p X" o (=1)"pn € F(py,...,00)[X].

Butg(X) =[[(X —X,)in F(Xy,...,X,)[X], and saF' (X1, ..., X,) is the splitting field
of g(X) overF'(pi, ..., p,). Corollary[5.32 then shows thathas Galois grougs,,, which
must also be the Galois group 6f

Let P(t4,...,t,) be such thatP(p,,...,p,) = 0. Equation[1[6#, shows that if
my(ty, ..., t,) @andma(ty, ..., t,) are distinct monomials, then, (py, . . ., p,) andma(p1, ..., pn)
have distinct highest monomials. Therefore, cancellation can’t occur, aRé¢sa . ., t,,)
must be the zero polynomial. O

REMARK 5.34. SinceS,, occurs as a Galois group ov&r, and every finite group occurs
as a subgroup of some,, it follows that every finite group occurs as a Galois group over
some finite extension @, but does every finite Galois group occur as a Galois group over
Q itself?

The Hilbert-Noether program for proving this was the following. Hilbert proved that
if G occurs as the Galois group of an extensioro Q(t4, ..., t,,) (thet; are variables),
then it occurs infinitely often as a Galois group o@r For the proof, realizeZ as the
splitting field of a polynomialf (X) € k[ti, ..., t,|[X] and prove that for infinitely many
values of the;, the polynomial you obtain i@[X] has Galois groug:. (This is quite a
difficult theorem—see Serre, J.-Bectures on the Mordell-Weil Theoreit989, Chapter
9.) Noether conjectured the following: L&t C S,, act onF'(X4, ..., X,,) by permuting the
XithenF(Xy, ..., X,)% = F(ty, ..., t,) (for variables;). Unfortunately, Swan proved in
1969 that the conjecture is false fGrthe cyclic group of orded7. Hence this approach
can not lead to a proof that all finite groups occur as Galois groups(@yvbkut it doesn’t
exclude other approaches. [For more information on the problem, see Serre, ibid., Chapter
10, and Serre, J.-Flppics in Galois Theoryl992.]

REMARK 5.35. TakeF = C, and consider the subset©f*! defined by the equation

X" T X" . (=1)"T, = 0.
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It is a beautiful complex manifold of dimensionn. Consider the projection
m: S —=C"  (z,t1,...,th) = (t1,. .., tn).
Its fibre over a pointa, . .., a,) is the set of roots of the polynomial
X" —a; X"+ 4 (1) ay,.

The discriminantD(f) of f(X) = X" — T/ X" ' + ... + (=1)"T,, is a polynomial in
C[Ty,...,T,]. Let A be the zero set dD( f) in C". Then over each point @" \ A, there
are exactlyr points of S, andS \ 7~!(A) is a covering space ovét* \ A.

A brief history

As far back as 1500 BC, the Babylonians (at least) knew a general formula for the roots of
a quadratic polynomial. Cardan (about 1515 AD) found a general formula for the roots of a
cubic polynomial. Ferrari (about 1545 AD) found a general formula for the roots of quartic
polynomial (he introduced the resolvent cubic, and used Cardan’s result). Over the next
275 years there were many fruitless attempts to obtain similar formulas for higher degree
polynomials, until, in about 1820, Ruffini and Abel proved that there are none.

Norms and traces

Recall that, for am x n matrix A = (a;;)

Tr(A) = > .ai (trace ofA)

det(A) = >, SIGN0)a15(1) " Ano(n), (determinant of4)

ca(X) = det(XI,— A) (characteristic polynomial oft).
Moreover,

ca(X) = X" —Tr(A)X" "+ - 4 (=1)" det(A).

None of these is changed whehis replaced by its conjugaté AU~ by an invertible
matrix U. Therefore, for any endomorphismof a finite dimensional vector spatg we
can defin&]

Tr(a) = Tr(A), det(a) = det(A), co(X) = ca(X)
whereA is the matrix ofa with respect to any basis &f. If 5 is a second endomorphism
of V,

Tr(e + ) = Tr(e) + Tr(B);
det(aB) = det(a) det(8).

"The coefficients of the characteristic polynomial
aX)= X"+ X" e,

of o have the following description _ _
¢i = (=1)" Tr(a|]A*V)

— see Bourbaki, N., Algebra, Chapter 3, 8.11.
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Now let £ be a finite field extension of’ of degreen. An elementx of E defines an
F-linear map
a,: F— FE, z+— az,

and we define
TrE/F(a) = Tr(ay), NmE/F(a) = det(ay), cmE/F(X) = Co, (X).

Thus, Trg/p is @ homomorphism{E, +) — (F,+), and Nmg,p is a homomorphism
(EX") - (FX")'

ExXAMPLE 5.36. (a) Consider the field extensi@nD> R. Fora = a + bi, the matrix ofay,

with respect to the basidl, i} is ( Z _ab > and so

Tre/r(o) = 2R(a), Nmejr(a) = lor]?.
(b) Fora € F, ay, is multiplication by the scalat. Therefore
Trg/p(a) = na, Nmg/p(a) = a", cgp/r(X) = (X —a)"

wheren = [E : F].

Let E = Q[«, i] be the splitting field ofX® — 2. To compute the trace and normfn
E, the definition requires us to compute the trace and normliéf:a 16 matrix. The next
proposition gives us a quicker method.

PROPOSITIONS.37. Let £/ F' be a finite extension of fields, and |&tX) be the minimum
polynomial ofa € E. Then

Cair/r(X) = F(X) L,

PROOF. Suppose first thall = F'[a]. In this case, we have to show tha{ X) = f(X).
Note thata — «, is aninjective homomorphism fronF¥ into the ring of endomorphisms
of £ as a vector space ovér. The Cayley-Hamilton theorem shows thata;) = 0, and
thereforec,(a) = 0. Hencef|c,, but they are monic of the same degree, and so they are
equal.

For the general case, 18, ..., 3, be a basis foF'[o] over F', and lety, ..., v,, be a basis
for E over F|a]. As we saw in the proof of (1.20,3;7,} is a basis fotE over F'. Write
af; = > a;B;. Then, according to the first case proved—4 (a;;) has characteristic
polynomial f(X). Butag;v, = > a0, and so the matrix ok, with respect to{ 5, }
breaks up inta: x n blocks with A’s down the diagonal and zero matrices elsewhere, from
which it follows thatc,, (X) = ca(X)™ = f(X)™. O

COROLLARY 5.38. Suppose that the roots of the minimum polynomial efe o, .. ., a,
(in some splitting field containing), and that[£' : F[a]] = m. Then

Tr(a) = mzyﬁaia Nmpg/pa = (H?:lai)m-
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PROOF. Write the minimum polynomial of as

fX)=X"+a X" P+ da, = [[(X — ),

so that
a; = —ZOZZ‘, and
a, = (—1)"][a.
Then
co(X) = (f(X))" = X™ 4+ ma X™ 44 ar,
so that

Trp/p(a) = —ma; = m) oy, and
Ningp(a) = (~1)™a = (Tag)™ a

ExAMPLE 5.39. (a) Consider the extensi@hD R. If « € C\ R, then
ca(X) = f(X) = X? - 2R(a) X + |af®.

If @ € R, thenc,(X) = (X —a)%.

(b) Let £ be the splitting field ofX® — 2. ThenE has degre&6 overQ and is generated
by a = v/2 andi = v/—1 (see Exercise 16). The minimum polynomiakofs X® — 2, and
SO

Cagia/o(X) = X =2, cump(X) = (X®-2)
Tr@[a]/@a = 07 TI'E/QCK = 0
Nmgjqoa = -2, Nmpoo = 4

REMARK 5.40. LetF be a separable extensioniofand let) be the set of'-homomorphisms
of I/ into an algebraic closur@ of F. Then

TrE/F o= ZO’EEU&

Nmg/pa =[], cno0.

WhenE = Fla], this follows from[5.38 and the observation (¢f. [2.1b) that sheare
the roots of the minimum polynomigl(X) of o over F'. In the general case, they are
still roots of f(X) in 2, but now each root of (X') occurs|E : F[a]] times (because each
F-homomorphisn¥'[a| —  has[E : F|a]] extensions td&?). For example, if£ is Galois
over I’ with Galois group, then

Trppa=) o0

Nmp/pa =[], o0

PrROPOSITIONS.41. For finite extension® > M D F, we have

TTE/M © TTM/F = TTE/Fw
NmE/]\/[ ONII’IM/F = NmE/F .
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PROOF. If F'is separable ovdr, then this can be proved fairly easily using the descriptions
in the above remark. We omit the proof in the general case. O

PROPOSITIONS.42. Let f(X) € F[X] factorasf(X) =[], (X — «;) in some splitting

=1
field, and leto = ;. Then, withf’ = % (formal derivative), we have

disc f(X) = (=1)™" D Nmpayp f'(e).

PrRoOOF. Compute that
disc f(X) £ ], (0 — )’
= (=) 2 T (s — )
= (-
= (-

)
1>mm /2. H f(az)
1™ D2 Nmppoyp(f/(a)  (by[E-40) O

ExAMPLE 5.43. We compute the discriminant of
f(X)=X"+aX+b, a,b€eF,

assumed to be irreducible and separable, by computing the norm of

v e (@) =na™ ' +a, f(a)=0.

On multiplying the equation
a"+aa+b=0
by na~! and rearranging, we obtain the equation

n—1

na" ' = —na — nba .
Hence
y=na""t+a=—(n—1)a—nba"
Solving fora gives
B —nb
v+ (n—1a

From the last two equations, it is clear théiy] = F[v], and so the minimum polynomial
of v over F' has degree also. If we write

—nb _ P(X)
H(rosme) = a0
P(X)=(X+n—-1a)" —na(X + (n—1a)" '+ (=1)"n"p"*
Q(X) = (X + (n—1)a)"/b,

then
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e (4 (0= D) _ (=nb)
v+ (n—1)a)" —nb)"
= == O
Q(7) 2 e
andP(X) is monic of degree, it must be the minimum polynomial af. ThereforeNm ~
is (—1)" times the constant term &f(.X'), namely,

Nm~y =n"b""" + (=1)"*(n — 1)" 'a"
Therefore,
disc(X™ + aX +b) = (=1)"C=D2(prpn=t 4 (—1)"Y(n — 1)" " La"),

which is something Maple V doesn’t know (because it doesn’'t understand symbols as ex-
ponents). For example,

disc(X® 4+ aX +b) = 5°b* + 4%a.

Exercises 21-23
21*. Fora € Q, let G, be the Galois group oK* + X3 + X? + X + a. Find integers
ai,az,as,as SUCh that # j = G, is not isomorphic gd@-,, .

22*. Prove that the rational solutionsb € Q of Pythagoras’s equatiart + »* = 1 are of

the form , ,
s —1 2st
0=——>, b=——, s,t € Q,
52 + 2 % + 12 Q

and deduce that any right triangle with integer sides has sides of length
d(m? — n? 2mn, m? + n?)

for some integerd, m, andn (Hint: Apply Hilbert's Theorem 90 to the extensi@:|/Q.)
23*. Prove that a finite extension @f can contain only finitely many roots af



6 ALGEBRAIC CLOSURES 71

6 Algebraic closures

In this section, we prove that Zorn's lemma implies that every fiéllas an algebraic
closuref). Recall that ifF' is a subfieldC, then the algebraic closure @f in C is an
algebraic closure of' (1.48). If /" is countable, then the existencefoican be proved as
in the finite field cas€ (4.20), namely, the set of monic irreducible polynomiai3.i is
countable, and so we can list thefn fs, .. .; define E; inductively by, Ey = F, E; = a
splitting field of f; over £;_;; then{2 = | J E; is an algebraic closure df.

The difficulty in showing the existence of an algebraic closure of an arbitraryHiesd
in the set theory. Roughly speaking, we would like to take a union of a family of splitting
fields indexed by the monic irreducible polynomialsAfX]|, but we need to find a way
of doing this that is allowed by the axioms of set theory. After reviewing the statement of
Zorn's Lemma, we sketch three solutipfito the problem.

Zorn’'s Lemma

DEFINITION 6.1. (a) A relation< on a setS is apartial ordering if it reflexive, transitive,
and anti-symmetricd < b andb < a = a = D).

(b) A partial ordering is @otal orderingif, for all s,t € T, eithers < tort < s.

(c) An upper boundfor a subsef” of a partially ordered sétS, <) is an element € S
suchthat < sforallt € T.

(d) A maximal elemenbf a partially ordered sef is an element such that < s’ —-
s=¢g.

A partially ordered set need not have any maximal elements, for example, the set of
finite subsets of an infinite set is partially ordered by inclusion, but it has no maximal
elements.

LEMMA 6.2 (ZORN'S). Let (S, <) be a nonempty partially ordered set for which every
totally ordered subset has an upper boundinThenS has a maximal element.

Zorn's Lemm@d is equivalent to the Axiom of Choice, and hence independent of the
axioms of set theory.

REMARK 6.3. The sef of finite subsets of an infinite set doesn’t contradict Zorn’s Lemma,
because it contains totally ordered subsets with no upper boutd in

The following proposition is a typical application of Zorn’'s Lemma — we shall use a *
to signal results that depend on Zorn’s Lemma (equivalently, the Axiom of Choice).

¥There do exist naturally occurring fields, not containedCinthat are uncountable. For example, for
any field F there is a ringfF[[T']] of formal power serie$ ", a;T", a; € F, and its field of fractions is
uncountable even if’ is finite.

19The following is quoted from A.J. Berrick and M.E. Keatingp Introduction to Rings and Modules
2000: The name of the statement, although widely used (allegedly first by Lefschetz), has attracted the
attention of historians (Campbell 1978). As a ‘maximum principle’, it was first brought to prominence, and
used for algebraic purposes in Zorn 1935, apparently in ignorance of its previous usage in topology, most
notably in Kuratowski 1922. Zorn attributed to Artin the realization that the ‘lemma’ is in fact equivalent to
the Axiom of Choice (see Jech 1973). Zorn’s contribution was to observe that it is more suited to algebraic
applications like ours.
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PROPOSITIONG.4 (*). Every nonzero commutative ringhas a maximal ideal (meaning,
maximal amongproperideals).

PROOF. Let S be the set of all proper ideals iy, partially ordered by inclusion. [ is a
totally ordered set of ideals, theh= | J,., / is again an ideal, and it is proper because if
1 € Jthenl € [ for somel in T', and/ would not be proper. Thug is an upper bound
for . Now Zorn’s lemma implies that has a maximal element, which is a maximal ideal
in A. O

First proof of the existence of algebraic closures

(Bourbaki, 1959, Chap. §4.F9 An F-algebra is a ring containing’ as a subring. Let
(A;)icr be a family of commutativé’-algebras, and definerA; to be the quotient of the
F-vector space with basi$A; by the subspace generated by elements of the form:

(z;) + (i) — (z1) with z; + y; = z; foronej € I andx; = y; = z; for all i # j;

(x;) — a(y;) with z; = ay, foronej € I andx; =y, for all i # j.

It can be made into a commutati¥ealgebra in an obvious fashion (Bourbaki, 1989, Chap.
3, 3.9@, and there are canonical homomorphisfis— @ A; of F-algebras.

For each polynomiaf € F[X], choose a splitting field’;, and letQ? = (®rEy)/M
whereM is a maximal ideal iv » 'y (Whose existence is ensured by Zorn’s lemma). Note
that ' C ®pE; andM N F = 0. Then(2 has no ideals other thgi) and(2, and hence
is a field (se¢ 1]2). The composite of thehomomorphismt; — ®pE; — €2, being a
homomorphism of fields, is injective. Singesplits in E, it must also split in the larger
field Q. The algebraic closure df in Q2 is therefore an algebraic closure Bf(1.44).

Second proof of the existence of algebraic closures

(Jacobson 1964, p144.). Aftgr (4]20) we may assuirte be infinite. This implies that

the cardinality of any field algebraic ovéris the same as that df (ibid. p143). Choose

an uncountable sé&t of cardinality greater than that df, and identifyF" with a subset of

=. Let S be the set triple$E, +, -) with £ C = and(+, -) a field structure ot such that
(E,+,-) containsF’ as a subfield and is algebraic over it. Writg, +,-) < (E',+,-)

if the first is a subfield of the second. Apply Zorn’s lemma to show thats maximal
elements, and then show that a maximal element is algebraically closed. (See ibid. p144
for the details.)

Third proof of the existence of algebraic closures

(E. Artin, see Dummit and Foote 1991, 13.4). Consider the polynomialfing , =y, . . ]
in a family of variables:; indexed by the nonconstant monic polynomigls F[X]. If 1

20Bourbaki, N.,Elements de ma#imatique. I: Les structures fondamentales de I'analyse. Fascicule XI.
Livre Il; Alg ebre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifseibeuxi
édition. Actualies Scientifiques et Industrielles, No. 1102 Hermann, Paris 1959 iv+222 pp. (2 inserts). MR
30 #4751

21Bourbaki, Nicolas. Algebra. |. Chapters 1-3. Translated from the French. Reprint of the 1974 edition.
Elements of Mathematics. Springer-Verlag, Berlin, 1989. xxiv+709 pp.
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lies in the ideall in F[...,zy,...|] generated by the polynomiaf§z), then

gfiep) + -+ gnfuleg) =1 (N FlL. oz, ])

for someg; € F[...,zy,...] and some nonconstant monfc € F[X]. Let F’ be an
extension ofF’ containing a rooty; of f;, « = 1,...,n. Under theF’-homomorphism
Fl...,zp,...] = F',

{ Tf = &
xp—0, f&{fi,...,fu}
the above relation becom@s= 1. From this contradiction, we deduce thiatioes not
lie in 7, and so Proposition 6.4 applied f]. . ., zy,...]/I shows thatl is contained in a
maximal ideall/. Let E; = F'[...,zy,...]/M. ThenE; is a field containing (a copy ofy
in which every nonconstant polynomial i X] has at least one root. Repeat the process
starting withE; instead off’ to obtain a fieldr,. Continue in this way to obtain a sequence
of fields

F=FE,CE, CE,C--,

and letE = |J E;. ThenFE is algebraically closed, because the coefficients of any noncon-
stant polynomialy € E[X] lie in E; for somei, and thery has a root inF; ;. Therefore,
the algebraic closure df in E is an algebraic closure df (1.46 )

(Non)uniqueness of algebraic closures

THEOREMG.5 (*). Let(2 be an algebraic closure df, and letE be an algebraic extension
of F'. There exists a’-homomorphisnE — €, and, if £ is also an algebraic closure of
F, then every such homomorphism is an isomorphism.

PROOF. Suppose first that’ is countably generated ovét, i.e., E = Flay, ..., ay,. . .].
Then we can extend the inclusion map— ) to F[«;] (mapa, to any root of its minimal
polynomial in(2), then toF o, a»], and so on (see 2.2).

In the uncountable case, we use Zorn's lemma.d.be the set of pairsM, ;) with
M afieldF ¢ M C E andg,, anF-homomorphismV, — Q. Write (M, ¢ar) < (N, ¢n)
if M C N andpy|M = ¢y. This makesS into a partially ordered set. Lét be a
totally ordered subset &f. ThenM' = |J,,. M is a subfield ofE, and we can define
a homomorphismy’: M’ — Q by requiring thaty’(x) = ¢y (x) if © € M. The pair
(M’ ') is an upper bound fof' in S. Hence Zorn’s lemma gives us a maximal element
(M, p)in S. Suppose that/ # E. Then there exists an element E, o ¢ M. Sincea
is algebraic ovel/, we can apply[(2]2) to extendto M [«], contradicting the maximality
of M. HenceM = FE, and the proof of the first statement is complete.

If F is algebraically closed, then every polynomjak F'[X]| splits in E[X] and hence
in p(E)[X]. Leta € , and letf(X) be the minimum polynomial of.. ThenX — « is
a factor of f(X) in Q[X], but, as we just observed(X) splits inp(E)[X]. Because of
unique factorization, this implies thate ¢(E). O

2In fact, E is algebraic ovef. To see this, note that; is generated by algebraic elements o¥ernd
so is algebraic oveF' (apply[1.4%). SimilarlyE; is algebraic oveF; and therefore also ovét (seq 1.3]Lb).
Continuing in this way, we find that every element of evékyis algebraic over .
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The above proof is a typical application of Zorn’s lemma: once we know how to do
something in a finite (or countable) situation, Zorn’s lemma allows us to do it in general.

REMARK 6.6. Even for a finite fieldF’, there will exist uncountably many isomorphisms
from one algebraic closure to a second, none of which is to be preferred over any other.
Thus itis (uncountably) sloppy to say that the algebraic closureisfunique. All one can

say is that, given two algebraic closures()’ of F', then, thanks to Zorn’s Lemma, there
exists anF'-isomorphism) — €'.



7 INFINITE GALOIS EXTENSIONS 75

7 Infinite Galois extensions

Recall [3.ID) that a finite extensiéhof F' is Galois overF if it is normal and separable,
i.e., if every irreducible polynomiaf € F'[X]| having a root inf2 hasdeg f distinct roots
in 2. Similarly, we define an algebraic extensiarof /' to beGaloisover F' if it is normal
and separable. Equivalently, a figld> F' is Galois overF' if it is a union of subfields
finite and Galois overF'.

For a Galois extensioft/ F’, we letGal(Q2/F') = Aut(Q2/F'). Consider the map

o (o|E): Gal(Q/F) — [[Gal(E/F)

(product over the finite Galois extensiofsof F' contained in(2). This map is injective,
becaus€? is a union of finite Galois extensions. We give each finite groud( £/ F')
the discrete topology anf[ Gal(E/F') the product topology, and we giv&al(2/F') the
subspace topology. Thus the subgrotpd(Q2/E), [E : F] < oo, form a fundamental
system of neighbourhoods dfin Gal(2/F).

By the Tychonoff theoren,| Gal(E/F') is compact, and it is easy to see that the image
of Gal(Q2/F) is closed — hence it is compact and Hausdorff.

THEOREM7.1. Let{2 be Galois overF’ with Galois groupG. The maps
Hw— QY M Gal(QQ/M)

define a one-to-one correspondence betweerltteed subgroups of> and the interme-
diate fieldsM. A field M is of finite degree ovef if and only if Gal(2/M) is open in
Gal(Q/F).

PrROOF. Omit—itis not difficult given the finite case. See for example, E. Artin, Algebraic
Numbers and Algebraic Functions, p103. ]

REMARK 7.2. The remaining assertions in the Fundamental Theorem of Galois Theory
carry over to the infinite case provided that one requires the subgroups to be closed.

EXAMPLE 7.3. Let(2 be an algebraic closure of a finite fidl). ThenG = Gal(Q2/F,)
contains a canonical Frobenius element= (a — a”), and it is generated by it as a
topological group, i.e.7 is the closure ofo). EndowZ with the topology for which the
groupsnZ, n > 1, form a fundamental system of neighbourhood§.of hus two integers
are close if their difference is divisible by a large integer.

As for any topological group, we can complé&téor this topology. A Cauchy sequence
in Z is a sequencéy;);>1, a; € 7Z, satisfying the following condition: for alt > 1, there
exists an\V such thats; = a; mod n fori,j > N. Call a Cauchy sequence itrivial
if a; — 0asi — oo, i.e., if for alln > 1, there exists aV such thatu; = 0 mod n.

The Cauchy sequences form a commutative group, and the trivial Cauchy sequences form
a subgroup. We defing to be the quotient of the first group by the second. It has a ring
structure, and the map sending € Z to the constant sequenee m,m, ... identifiesZ

with a subgroup of.

Let o € Z be represented by the Cauchy sequeiage The restriction ot to F,» has
ordern. Therefore(o|F,» )" is independent afprovided it is sufficiently large, and we can
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definec® € Gal(§2/F,) to be such that, for each c*|F,. = (¢|F,»)* for all i sufficiently
large (depending on). The mapy — o°: Z — Gal(Q2/F,) is an isomorphism.

The groupZ is uncountable. To most analysts, it is a little weird—its connected com-
ponents are one-point sets. To number theorists it will seem quite natural — the Chinese
remainder theorem implies that it is isomorphid {9 ;. Z, WhereZ, is the ring ofp-adic
integers.

EXAMPLE 7.4. Let(Q) be the algebraic closure @) in C; thenGal(2/Q) is one of the
most basic, and intractable, objects in mathematics. It is expectedudatfinite group
occurs as a quotient of it, and it certainly ifgasas a quotient group for every(and every
sporadic simple group, and every...). We do understanid/2°/F') whereF C C is a
finite extension of) and F2° is the union of all finite abelian extensions Bfcontained in

C. For exampleGal(Q®/Q) = Z*. (This is abelian class field theory — see my notes
Class Field Theory.
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8 Transcendental extensions

In this section we consider field® O F with  much bigger tharF’. For example, we
could haveC D Q.
Elementsy, ..., a,, of € give rise to anF-homomorphism

f = f(Oél, ...,Oén>2 F[Xl, . 7Xn] — Q.

If the kernel of this homomorphism is zero, then theare said to bealgebraically in-
dependenbver F', and otherwise, they amdgebraically dependentver F'. Thus, then;
are algebraically dependent overif there exists a nonzero polynomié( Xy, ..., X,,) €
F[X3, ..., X,] such thatf(aq, ..., a,,) = 0, and they are algebraically independent if

il 7 _ _ . .
iy € F, E aj,.. i,0f ..o =0 = a; =0alliy, ..., 7.

Note the similarity with linear independence. In factfifs required to be homogeneous
of degree 1, then the definition becomes that of linear independence.

ExAMPLE 8.1. (a) A single element is algebraically independent overif and only if it
is transcendental ové.

(b) The complex numbers ande are almost certainly algebraically independent over
Q, but this has not been proved.

An infinite set A is algebraically independenbver I if every finite subset of4 is
algebraically independent; otherwise, itigebraically dependentver F.

REMARK 8.2. If a, ..., a,, are algebraically independent o€y then
f(Xl, 7Xn) = f(Oél, ceuy C(n): F[Xh 7Xn] — 17[0417 ceey Oén]

is an injection, and hence an isomorphism. This isomorphism then extends to the fields of
fractions,
X;— o F(Xy,...X,) = F(ag,...,ay)

In this caseF'(ay, ..., v, IS called goure transcendental extensioof /. The polynomial
f(X)=X"—a X" '+ .. (=D,

has Galois groug,, over F'(ay, ..., a,,) (5.33).

LEMMA 8.3. Lety € Q and letA C (). The following conditions are equivalent:
(a) v is algebraic overF'(A);
(b) there exist3,, ..., 3, € F(A) suchthaty” + 3y ' +--- + 3, = 0;
(c) there existsy, 31, . . ., B, € F[A], notall0, such that3yy™ + S1y* 1+ - - - + 3, = 0;
(d) there exists arf(Xy,..., X, Y) € FIX;...,X,,,Y]anday,...,a,, € A such
that f(aq,...,an,,Y) #0but f(aq, ..., an,v) =0.
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PROOF. (a)—= (b) = (c) = (@) are obvious.
(d) = (c). Write f (X1, ..., X, Y) as a polynomial iry” with coefficients inF'[ X1, . . ., X,,,],

f(X, ., X0, Y) =Y fi( Xy, .., X)) Y

Then (c) holds withs; = fi(aq, ..., anm).

(c) = (d). Theg; in (c) can be expressed as polynomials in a finite number of elements
ag, ..., qn Of A, say,fB; = fi(aq,...,a,) with f; € FIX,..., X,,]. Then (d) holds with
f=>fi(Xy,..., X,,)Y . O

DEFINITION 8.4. Wheny satisfies the equivalent conditions of Lemmg 8.3, it is said to be
algebraically dependenbn A (over F'). A setB is algebraically dependentn A if each
element ofB is algebraically dependent oh

The theory in the remainder of this section is logically very similar to a part of linear
algebra. It is useful to keep the following correspondences in mind:

Linear algebra Transcendence
linearly independent  algebraically independent
A C spanB) A algebraically dependent ab
basis transcendence basis
dimension transcendence degree

THEOREMB8.5 (FUNDAMENTAL RESULT). LetA = {ay,...,a,,} andB = {64, ..., 5, } be
two subsets df?. Assume
(a) Ais algebraically independent (ovér);
(b) A is algebraically dependent oB (over F)).
Thenm < n.
We first prove two lemmas.

LEMMA 8.6 (THE EXCHANGE PROPERTY. Let{ay,...,a,,} be a subset of; if 5 is al-
gebraically dependent ofrv, ..., a,,, } but not on{ay, ..., a1 }, thenay, is algebraically
dependent ojay, ..., a1, B}

PROOF. Becausei is algebraically dependent vy, . . ., o, }, there exists a polynomial
f(Xy, ..., X, Y) with coefficients inf” such that

flag, ., an,Y)#£0,  flag,...,am, 3) =0.

Write f as a polynomial in¥,,,

m

Xt X, V) =Y (X, o, Xy, V)X,
and observe that, becauggy;, . . ., ., Y) # 0, atleast one of the polynomialg(a, ..., a1, Y),

sayua;,, is not the zero polynomial. Becausés not algebraically dependent éa, ..., a1 },

aio(Q1y ooy A1, B) # 0. Therefore f(aq, ..., a1, X, B) # 0. Sincef(ay, ..., am, §) =
0, this shows that,, is algebraically dependent diavi, ..., &y, —1, 3} O
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LEMMA 8.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCEH). If C'is algebraically depen-
dent onB, and B is algebraically dependent oA, thenC' is algebraically dependent on
A.

PrROOF. The argument in the proof of Propositipn 1.44 shows thatig algebraic over a
field £ which is algebraic over a field, then~ is algebraic ovef’ (if a4, ...,a, are the
coefficients of the minimum polynomial of over E, then the fieldF'[a4, ..., a,,~| has
finite degree over’). Apply thiswith £ = F(AU B) andF = F(A). O

PrROOF OFTHEOREM[B.8. Let k be the number of elements thatand B have in com-
mon. If & = m, thenA C B, and certainlyn < n. Suppose that < m, and writeB =

{ai, ..., ag, Bri1, .-, Bn}- SinCeay,q is algebraically dependent dnvy, ..., ag, Biy1s -y On }
but not on{ay, ..., ax }, there will be a3;, k + 1 < j < n, such thaty,,, is algebraically
dependent oy, ..., ag, Bi+1, ..., 3;} but not

{Oél, ...,Oék,ﬁk+1, ...,ﬁjfl}.

The exchange lemma then shows thats algebraically dependent on

B € BU {ar} ~ {B).

ThereforeB is algebraically dependent dby, and soA is algebraically dependent dsy
(by[8.7). Ifk +1 < m, repeat the argument with and B;. Eventually we’ll achieve
k = m,andm < n. O

DEFINITION 8.8. Atranscendence basi®r (2 over F' is an algebraically independent set
A such thaf) is algebraic ovefF'(A).

LEMMA 8.9. If 2 is algebraic overF'(A), and A is minimal among subsets Gfwith this
property, then it is a transcendence basisfbover F'.

PROOF. If A is not algebraically independent, then there isvas S that is algebraically
dependent o'~ {a}. Itfollows from Lemma 8.7 tha is algebraic oveF (A~ {a}). O

THEOREM8.10. If there is a finite subset C 2 such that is algebraic overF'(A), then
Q2 has a finite transcendence basis ovér Moreover, every transcendence basis is finite,
and they all have the same number of elements.

PROOF. In fact, any minimal subset’ of A such thaf is algebraic ovef'(A’) will be a
transcendence basis. The second statement follows from Theorem 8.5. O]

LEmMA 8.11. Suppose thatd is algebraically independent, but that U {3} is alge-
braically dependent. Thenis algebraic overF'(A).

PROOF. The hypothesis is that there exists a nonzero polynofifisl, ..., X,,,Y) € F[X3, ..., X,,, Y]
such thatf(ay, ..., a,, ) = 0, some distinctyy, ..., «,, € A. BecauseA is algebraically
independenty” does occur irf. Therefore

f:goym+glym—1_'__'.+gm7 ngF[Xh?XTLL 907&07 mZ 1.
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As gy # 0 and thew; are algebraically independegtas, ..., a,,) # 0. Becaused is a root
of
f = gO(alv ) an)Xm + gl(ala ceey an)Xm_l + - gm<a17 (EXS) an)v

it is algebraic ovef'(ay, ..., a;,) C F(A). O

PrROPOSITION8.12. Every maximal algebraically independent subsef2a$ a transcen-
dence basis fof2 over F.

PROOF. We have to prove tha® is algebraic over’(A) if A is maximal among alge-
braically independent subsets. But the maximality implies that, for evegy Q) . A,
A U {3} is algebraically dependent, and so the lemma showshatalgebraic over
F(A). O

THEOREMS8.13 (*). Every field2 containingF' has a transcendence basis over

PROOF. Let S be the set of algebraically independent subsefs. Ve can partially order

it by inclusion. LetT be a totally ordered subset, and lét= U{A | A € T'}. | claim that

B € S, i.e., thatB is algebraically independent. If not, there exists a finite subSelf

B that is not algebraically independent. But such a subset will be contained in one of the
sets inT’, which is a contradiction. Now Zorn’s Lemma shows that there exists a maximal
algebraically independent, which, according to Proposjtion|8.12, is a transcendence basis
for Q2 over F. ]

It is possible to show that any two (possibly infinite) transcendence bas@xohaer F’
have the same cardinality. The cardinality of a transcendence basisdegr F is called
the transcendence degreef (2 over F. For example, the pure transcendental extension
F(Xy,...,X,) has transcendence degreever F.

EXAMPLE 8.14. Letp,,...,p, be the elementary symmetric polynomialsin, ..., X,,.
ThefieldF'(Xy,..., X, ) is algebraic oveF (py, ..., p,), and so{py, ps, . . ., p,} CONtains a
transcendence basis B X, ..., X,,). Becausd’'(Xj, ..., X,) has transcendence degree
n, thep;’s must themselves be a transcendence basis.

EXAMPLE 8.15. Let(2 be the field of meromorphic functions on a compact complex man-
ifold M.

(a) The only meromorphic functions on the Riemann sphere are the rational functions
in z. Hence, in this casé) is a pure transcendental extensiorCodf transcendence degree
1.

(b) If M is a Riemann surface, then the transcendence degrfeeweér C is 1, and(2
is a pure transcendental extensiorflolk=- M is isomorphic to the Riemann sphere

(c) If M has complex dimensiom, then the transcendence degre€ is, with equality
holding if M is embeddable in some projective space.

PROPOSITION8.16. Any two algebraically closed fields with the same transcendence de-
gree overF are F-isomorphic.
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PROOF. Choose transcendence bageand A’ for the two fields. By assumption, there
exists a bijectionp: A — A’, which ¢ extends uniquely to af-isomorphismp: F[A] —
F[A’], and hence to af’-isomorphism of the fields of fractionS(A) — F(A’). Use this
isomorphism to identifyF'(A) with F'(A’). Then the two fields in question are algebraic
closures of the same field, and hence are isomorphic (Thgorém 6.5). O

REMARK 8.17. Any two algebraically closed fields with the same uncountable cardinality
and the same characteristic are isomorphic. The idea of the proof is as follows. dret

F' be the prime subfields ¢t and(Y’; we can identifyF’ with F’. Then show that whef?

is uncountable, the cardinality 6f is the same as the cardinality of a transcendence basis
over F'. Finally, apply the proposition.

REMARK 8.18. What are the automorphisms@? There are only two continuous auto-
morphisms (cf. Exercise 31 and solution). If we assume Zorn’s Lemma, then it is easy
to construct many: choose any transcendence bh$is C overQ, and choose any per-
mutationa of A; thena defines an isomorphis@(A) — Q(A) that can be extended to

an automorphism of. Without Zorn’s Lemma, there are only two, because the noncon-
tinuous automorphisms are nonmeasurable (or, so I've been told), and it is known that the
Zorn’s Lemma (equivalently, the Axiom of Choice) is required to construct nonmeasurable
functions.

THEOREM 8.19 (LUROTH'S THEOREM). Any subfieldE of F'(X) containing F’ but not
equal toF' is a pure transcendental extensionfof

PROOF. Jacobson 1964, IV 4, p157. O

REMARK 8.20. This fails when there is more than one variable — see Zariski’'s example
(footnote to Remark 5|5) and Swan’s example (Rerark]5.34). The best true statement is
the following: if [F/(X,Y) : E] < oo andF is algebraically closed of characteristic zero,
thenF is a pure transcendental extensionfofTheorem of Zariski, 1958).
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A Review exercises

24. Let p be a prime number, and let andn be positive integers.
(a) Give necessary and sufficient conditionsmerandn for F,» to have a subfield iso-
morphic withF,~. Prove your answer.
(b) If there is such a subfield, how many subfields isomorphic Wjth are there, and
why?

25. Show that the Galois group of the splitting fieldof X3 — 7 over Q is isomorphic
to S3, and exhibit the fields betwed&p and £'. Which of the fields betwee®@ and £ are
normal overQ?

26. Prove that the two field®[v/7] andQ[v/11] are not isomorphic.

27.
(a) Prove that the multiplicative group of all nonzero elements in a finite field is cyclic.
(b) Construct explicitly a field of orde¥, and exhibit a generator for its multiplicative

group.
28. Let X be transcendental over a field and letE be a subfield ofF'(X) properly
containingF'. Prove thatX is algebraic oveF.

29. Prove as directly as you can that'ifs a primitivep™" root of 1, p prime, then the Galois
group ofQ[¢] overQ is cyclic of orderp — 1.

30. Let G be the Galois group of the polynomidl® — 2 overQ.
(a) Determine the order @f.
(b) Determine whethet: is abelian.
(c) Determine whethef is solvable.

31.
(&) Show that every field homomorphism frd&to R is bijective.
(b) Prove thatC is isomorphic to infinitely many different subfields of itself.

32. Let F' be a field with16 elements. How many roots il does each of the following
polynomials have&® — 1; X4 —1; X% —1; X7 — 1.

33. Find the degree of a splitting field of the polynomial® — 5)(X? — 7) overQ.
34. Find the Galois group of the polynomial® — 5 over each of the field® andR.

35. The coefficients of a polynomigl(X) are algebraic over a fiel#. Show thatf(X)
divides some nonzero polynomig@lX') with coefficients inF'.

36. Let f(X) be a polynomial in?’[ X| of degreen, and letE be a splitting field off. Show
that[E : F| dividesn!.
37. Find a primitive element for the fiel@[/3, v/7] over Q, i.e., an element such that

QV3,VT] = Qla].

38. Let G be the Galois group dfX* — 2)(X® — 5) overQ.
(a) Give a set of generators f6t, as well as a set of defining relations.
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(b) What is the structure off as an abstract group (is it cyclic, dihedral, alternating,
symmetric, etc.)?

39. Let F be a finite field of characteristig¢ 2. Prove thatY? = —1 has a solution irf" if
and only if #F =1 mod 4.

40. Let E be the splitting field ove®) of (X2 — 2)(X? — 5)(X? — 7). Find an element
in £ such that?' = Q[«a]. (You must prove thakl = Ql«a].)

41. Let E be a Galois extension df with Galois groupS,,, n > 1 not prime. LetH; be
the subgroup ob,, of elements fixingl, and letH, be the subgroup generated by the cycle
(123...n). Let E; = Efi i = 1,2. Find the degrees df,, E,, £, N E,, andE, E, over

F. Show that there exists a field such thatF’ ¢ M C Ey, M # F, M # Es, but that no
such field exists fof;.

42. Let ¢ be a primitive1 2™ root of 1 overQ. How many fields are there strictly between
Q[¢*] andQ[c].

43. For the polynomialX® — 3, find explicitly its splitting field overQ and elements that
generate its Galois group.

44.LetE = Q[¢],¢°> =1,( # 1. Show that ¢ F, and thatifL = E[i], then—1 is a norm
from L to E. Herei = /—1.

45. Let E be an extension field of, and let(2 be an algebraic closure &f. Letoy, ..., 0,
be distinctF-isomorphismgy — .
(@) Show that, ..., o, are linearly dependent ovex.
(b) Show thafE : F] > m.
(c) Let F' have characteristip > 0, and letL be a subfield of2 containingE and
such thate? € E for all @ € L. Show that eacls; has a unique extension to a
homomorphisnw;, : L — €.

46. ldentify the Galois group of the splitting field of X* — 3 over Q. Determine the
number of quadratic subfields.

47. Let I be a subfield of a finite field’. Prove that the trace map = Trg,r and the
norm mapN = Nmg,r of E over F both mapk onto F'. (You may quote basic properties
of finite fields and the trace and norm.)

48. Prove or disprove by counterexample.
(@) If L/K is an extension of fields of degr@ethen there is an automorphismof L
such thatX is the fixed field of.
(b) The same as (a) except thats also given to be finite.

49. A finite Galois extensiord. of a field K has degre&100. Show that there is a field
with K C F' C L such tha{F : K] = 100.

50. An algebraic extension of a field K of characteristi®) is generated by an element
that is a root of both of the polynomial$® — 1 andX* + X2 + 1. Given thatL # K, find
the minimum polynomial of.

51.Let F'/Q be a Galois extension of degr&g n > 1. Prove that there is a chain of fields

Q:F()CFlC"'Fn:F
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such that for every, 0 <i <n —1, [Fi;; : F;] = 3.

52. Let L be the splitting field ovef) of an equation of degreg with distinct roots.
Suppose thak has an automorphism that fixes three of these roots while interchanging the
other two and also an automorphisn 1 of order5.
(a) Prove that the group of automorphismd.as the symmetric group ohelements.
(b) How many proper subfields d@f are normal extensions f? For each such field,
what is[F : Q]?

53.1f L/K is a separable algebraic field extension of finite dedrestow that the number
of fields betweenk andL is at most®.

54.Let K be the splitting field ove® of X° — 1. Describe the Galois groupal( K /Q) of
K overQ, and show thak has exactly one subfield of degreeverQ, namelyQ|¢ + ¢*],
¢ # 1 aroot of X* — 1. Find the minimum polynomial of + ¢* overQ. Find Gal(L/Q)
when L is the splitting field ovef) of

(@) (X2 —5)(X>—1);

(b) (X2 +3)(X°—1).
55. Let Q; and(2, be algebraically closed fields of transcendence degmerQ, and let

a : Q; — Q9 be a homomorphism (in particulag(1) = 1). Show thatx is a bijection.
(State carefully any theorems you use.)

56. Find the group of)-automorphisms of the field = Q[v/—3, v/—2].

57. Prove that the polynomig(X) = X35 is irreducible over the fiel@[v/7]. If L is the
splitting field of f(X) overQ[v/7], prove that the Galois group @f/Q[y/7] is isomorphic
to S;. Prove that there must exist a subfiéldof L such that the Galois group @f/ K is
cyclic of order3.

58. Identify the Galois grou- of the polynomialf(X) = X° — 6X* + 3 over F, when
(@) F = Q and when (b)F' = F,. In each case, it/ is the splitting field off(X') over F,
determine how many field&™ there are such thdf > K O F with [K : F] = 2.

59. Let K be afield of characteristjg say withp™ elements, and létbe the automorphism
of K that maps every element to jt§ power. Show that there exists an automorphism
of K such thata? = 1 if and only if n is odd.

60. Describe the splitting field and Galois group, o@rof the polynomialX® — 9.

61. Suppose thak is a Galois field extension of a fiell such tha{F : F] = 5% - (43)%
Prove that there exist fields; and K, lying strictly betweent" and £ with the following
properties: (i) eaclk; is a Galois extension af’; (i) K1 N Ky = F'; and (iii) K1 Ky = E.

62. Let I' = I, for some primep. Letm be a positive integer not divisible y and et/
be the splitting field ofX™ — 1. Find [K : F| and prove that your answer is correct.

63. Let F' be afield of 81 elements. For each of the following polynomjéls ), determine
the number of roots of(X) that lie in F: X% — 1, X8 — 1, X% — 1,

64. Describe the Galois group of the polynomiaf — 7 overQ.
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65. Let K be a field of characteristic > 0 and letF" = K (u,v) be a field extension of
degreep? such that”? € K andwv? € K. Prove thatk is not finite, thatF is not a simple
extension ofi<, and that there exist infinitely many intermediate fiekds L D K.

66. Find the splitting field and Galois group of the polynomial — 5 over the fieldQ[v/2].
67. For any primep, find the Galois group ove of the polynomialX® — 5p*X + p.

68. FactorizeX* + 1 over each of the finite fields (&)s; (b) Fa5; and (c)Fy35. Find its
splitting field in each case.

69. Let Q[«] be a field of finite degree oveép. Assume that thereis@ € Q, ¢ # 0,
such that|p(«)| = ¢ for all homomorphisms: Q[a] — C. Show that the set of roots
of the minimum polynomial ofy is the same as that qf /a. Deduce that there exists an
automorphisnr of Q[«] such that

(@ c*=1and

(b) p(ovy) = p() forall vy € Qo] andp: Q[a] — C.
70. Let F' be a field of characteristic zero, and jebe a prime number. Suppose that
has the property that all irreducible polynomigl§X) € F|[X]| have degree a power of
p (1 = p° is allowed). Show that every equatigiiX) = 0, g € F[X], is solvable by
extracting radicals.

71. Let K = Q[v/5,/—7] and letL be the splitting field ove® of f(X) = X3 — 10.
(a) Determine the Galois groups &f and L overQ.
(b) Decide whethek contains a root of.
(c) Determine the degree of the field N L over@.
[Assume all fields are subfields @f]

72. Find the splitting field (oveff,) of X?" — X € F,[X], and deduce thaX?" — X has
an irreducible factorf € F,[X]| of degreer. Let g(X) € Z[X] be a monic polynomial
that becomes equal tH(X') when its coefficients are read modylo Show thatg(X) is

irreducible inQ[X].

73. Let E be the splitting field ofX® — 51 overQ. List all the subfields ofZ, and find an
elementy of E such thatF = Q[~].

74. Let k = 1904 be the field with1024 elements, and Ik be an extension df of degree
2. Prove that there is a unique automorphisof K of order2 which leaves: elementwise
fixed and determine the number of elementgof such thatr(z) = 271

75. Let F and E be finite fields of the same characteristic. Prove or disprove these state-
ments:
(&) There is a ring homomorphism éfinto £ if and only if # F is a power of#F'.
(b) There is an injective group homomorphism of the multiplicative group ofto the
multiplicative group ofF if and only if #E' is a power of#F.

76. Let L/ K be an algebraic extension of fields. Prove thas algebraically closed if
every polynomial ovefs factors completely ovet.

77. Let K be afield, and lef/ = K(X), X an indeterminate. Lekt be an intermediate
field different fromK. Prove thatl/ is finite-dimensional ovet..

78.Let 0y, 0, 03 be the roots of the polynomigl( X) = X3 + X? — 9X + 1.
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(&) Show that the, are real, nonrational, and distinct.
(b) Explain why the Galois group of(X) over Q must be eitherd; or S;. Without
carrying it out, give a brief description of a method for deciding which it is.

(c) Show that the rows of the matrix

9 9 9
01 6y 0O
92 93 91
03 91 62

W W w w

are pairwise orthogonal; compute their lengths, and compute the determinant of the
matrix.

79. Let £/ K be a Galois extension of degrg&; wherep andq are primesg < p andgq

not dividingp? — 1. Prove that:
(@) there exist intermediate fieldsand M such thafL : K] = p? and[M : K] = ¢;

(b) such fields. and M must be Galois oveK’; and
(c) the Galois group off/ K must be abelian.

80. Let ¢ be a primitive7" root of 1 (in C).
(@) Prove that + X + X%+ X3+ X* + X® + X is the minimum polynomial of over
Q.
(b) Find the minimum polynomial of + ; overQ.
81. Find the degree ovep of the Galois closurd( of @[2%] and determine the isomor-
phism class ofzal(K/Q).
82. Letp, q be distinct positive prime numbers, and consider the extersienQ[,/p, \/q] D

Q.
(a) Prove that the Galois group is isomorphictpx Cs.

(b) Prove that every subfield df of degree2 over Q is of the formQ[,/m| where

m € {p, q,pq}.
(c) Show that there is an element K such that' = Q[y].
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B Solutions to Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions
1. Similar to Examplé¢ 1.78.

2. Verify that3 is not a square if[v/2], and sdQ[v/2, V3] : Q] = 4.

3. (a) Apply the division algorithm, to gef(X) = ¢(X)(X — a) + r(X) with r(X)
constant, and puX’ = a to findr = f(a).

(c) Use that factorization i'| X | is unique (or use induction on the degreeff

(d) If G had two cyclic factorg’ andC” whose orders were divisible by a primethenG
would have (at least)? elements of order dividing. This doesn’t happen, and it follows
thatG is cyclic.

(e) The elements of orden in F* are the roots of the polynomi&l™ — 1, and so there
are at mostn of them. Hence any finite subgrodpof F* satisfies the condition in (d).

4. Note that it suffices to construet = cos %, and that{Q[o] : Q] = 5% = 3, and so
its minimum polynomial has degrer There is a standard method (once taught in high

schools) for solving cubics using the equation
cos 36 = 4 cos®§ — 3cosb.

By “completing the cube”, reduce the cubic to the fodd — pX — ¢. Then construct
so thata? = “2. Choose3d such thatos3¢ = 2¢. If 3 = cos6 is a solution of the above
equation, them = a3 will be a root of X3 — pX — ¢.

5. (a) is obvious, as is the “only if” in (b). For the “if” note that for anye S(FE), a ¢ F?,
E ~ F[X]/(X? - a).

(c) TakeE; = Q[/p;] with p; the:™ prime. Check thap; is the only prime that becomes
a square in;. For this use thata + b,/p)* € Q = 2ab = 0.

(d) Any field of characteristip contains (an isomorphic copy of),, and so we are
looking at the quadratic extensions®f. The homomorphism +— a? : Fx — Fx has
kernel{+1}, and so its image has indexn I . Thus the only possibility fof (E) isF,
and so there is at most o&(up tolF,,-isomorphism). To getone, tate= F[X]/(X?*—a),

a ¢ .

6. (a) If wisaroot of f(X) = X? — X — a (in some splitting field), then the remaining
roots arex+ 1, ..., a+ p — 1, which obviously lie in whichever field contains Suppose
that, in F'[X],

fX)=(X"+a X"+ +a) (X +--1), 0<r<p.

Then—a, is a sum ofr of the roots off, —a; = ra + d somed € 7Z - 15, and it follows
thata € F.

(b) The polynomialX? — X — 1 has no root inf, (check0 and1), and therefore (a)
impliesX? — X — 1 is irreducible inF,[X], and also ifZ[X] (seq 1.1B).

7. Let o be the reals™ root of 2. Eisenstein’s criterion shows tha&® — 2 is irre-
ducible inQ[X], and soQ[v/2] has degreé& over Q. The remaining roots o® — 2
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areCo, CCo, 3, (*a, where( is a primitive5™ root of 1. It follows that the subfield of®
generated by the roots of® — 2 is Q[(, «]. The degree of)[(, a] is 20, since it must be

divisible by [Q[¢] : Q] = 4 and[Q]¢] : Q] = 5.

8. It's F, becauseX?” — 1 = (X — 1)". (Perhaps | meanX?" — X — that would have
been more interesting.)

9.If f(X) = H(X — Oéi)mi, Q; 7é Oy then

and sad(X) = [, -, (X —a;)™~". Thereforeg(X) = [[(X — a,).

10. From {2.12) we know that eithgtis separable of (X) = f;(X?) for some polynomial

fi1. Clearly f; is also irreducible. Iff; is not separable, it can be writtgn(X) = fo( X?).
Continue in the way until you arrive at a separable polynomial. For the final statement, note
thatg(X) = [[(X — a;), a; # a;, and sof (X) = g(X*") = [[(X — a;)*" with o/ = a,.

11. Let o and7 be automorphisms aof' (X ) given byo(X) = —X and7(X) = 1 — X.
Theno andr fix X? andX? — X respectively, and ser fixesE =, F(X)NF(X? - X).
ButarX =1+ X, and so(o7)"(X) = m + X. ThusAut(F(X)/FE) is infinite, which
implies that /(X)) : £] is infinite (otherwiseF'(X) = Elo, . .., a,); an E-automorphism
of F'(X) is determined by its values on theg, and its value om; is a root of the minimum
polynomial of«;). If E contains a polynomiaf (X ) of degreen > 0, then[F'(X) : E] <
[F(X): F(f(X))] = m — contradiction.

12. Sincel + ¢ +--- 4+ ("1 =0, we havea + 3 = —1. If i € H, theniH = H and
i(GNH) =G~ H,and savandg are fixed byH. If j € G~ H,thenjH = G~ H and
Jj(G~N H)=H,and sgja = g andjfj = «. Henceaf € Q, anda andj are the roots of
X2+ X + af. Note that

af=> (Y, i€eH jeGNH
i

How many times do we haviet- j = 0? If i+ j = 0, then—1 = i~'4, which is a nonsquare;
conversely, if—1 is a nonsquare, take= 1 andj = —1 to geti + 7 = 0. Hence

i+j=0someiec H, je€G~H < —lisasquaremogd < p= -1 mod 4.

If we do have a solution to + j = 0, we get all solutions by multiplying it through by
the’%1 squares. So in the sum fas we see 1 a total o% times whernp = 3 mod 4

and not at all ifp = 1 mod 4. In either case, the remaining terms add to a rational
number, which implies that each power ©bccurs the same number of times. Thus for
p=1 mod4, af = —(5)?/(p — 1) = 2; the polynomial satisfied by and 3 is
X2+ X — 221, whose roots aré-1 + /T + p — 1)/2; the fixed field ofH is Q[,/p]. For
p=-1mod4, af = 5L+ (-1 (522 -4 /(p—1) = 551 — 22 = 2l the
polynomial isX? + X + 21, with roots(—1 & /T — p — 1)/2; the fixed field ofH is

Qlv/=pl.
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13.(a) Itis easy to see that/ is Galois overQ with Galois group(o, 7):

VI = /3 RN
{m:ﬁ {Tﬁ:—ﬁ

(b) We have

oo 2-V2 (2= (2-v2\ . .,
a? 2442 42 _< V2 ) = (V2= 1%

i.e.,ca? = ((vV2 —1)a)? Thus, ifa € M, thenca = +(v/2 — 1)a, and
o’a=(—vV2-1)(V2-1a=—«

asc’a = a # 0, this is impossible. Hence ¢ M, and sOF : Q] = 8.

Extendo to an automorphism (also denotedl of E. Againoca = £(v/2 — 1)a and
o?a = —a, and saw? # 1. Now o*a = «a, o*|M = 1, and so we can conclude thahas
order4. After possibly replacing with its inverse, we may suppose that = (v/2 —1)a.

B> G b 2
Repeat the above argument with 2 = 2=v3 — ( 5}6@) , and so we can extendto an

automorphism of_. (also denoted) with 7o = %ga. The order ofr is 4.
Finally compute that

3-3 3-V3
oTOQ = \/5—104; roa=(V2-1 Q.
—5 V2-1) (V2-n=2
Henceor # 70, andGal(E£/Q) has two noncommuting elements of orderSince it has
orders, it must be the quaternion group.

14. The splitting field is the smallest field containing aif" roots of1. Hence it isF,«
wheren is the smallest positive integer such thaf|p™ — 1, m = mgp".

15. We haveX* — 2X? — 8X — 3 = (X? + X? + 3X + 1)(X — 3), andg(X) =

X3+ X%+ 3X +1lisirreducible ovefQ (use 1.4??), and so its Galois group is eithgor

Ss. Either check that its discriminant is not a square or, more simply, show by examining its
graph thay(.X) has only one real root, and hence its Galois group contains a transposition
(cf. the proof of 4.1377?).

16. Eisenstein’s criterion shows that® — 2 is irreducible overQ, and soQ[a] : Q] = 8
whereq is a positives'” root of 2. As usual for polynomials of this type, the splitting field
is Q[a, ¢] where( is any primitives™ root of 1. For example{ can be taken to bé}i,
which lies inQ[a, i]. It follows that the splitting field iQ[«, i]. ClearlyQ|«, ] # Q[«],
becausé)[«], unlikei, is contained irR, and sdQ|«, i] : Q] = 2. Therefore the degree is
2 x 8 = 16.

17. Find an extensior./ F' with Galois groupS,, and letFE be the fixed field ofS; C 5.
There is no subgroup strictly betweéf) and S, _;, because such a subgroup would be
transitive and contain afm — 1)-cycle and a transposition, and so would egbigl(see
4.23). We can také& = L3,
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18. Type: “Factof X33 — X') mod 7;” and discard the factors of degreé.

19. Type “galoig X® + 2X° + 3X* + 4X3 + 5X% + 6X + 7);". Itis the groupPGL,(F5)
(group of invertible2 x 2 matrices oveif's modulo scalar matrices) which has ordef.
Alternatively, note that there are the following factorizations: n3pdtreducible; modb
(deg3)(deg3); mod 13 (deg1)(deg5); mod19, (degl)?(deg4); mod61 (deg1)?(deg2)?;
mod79, (deg2)3. Thus the Galois group has elements of type:

6, 3+3, 1+5 1+1+4, 1+1+4+2+2, 2+2+2

No element of type, 3, 3 + 2, or4 + 2 turns up by factoring modulo any of the firg0
primes (or, so | have been told). This suggests it is the gioupin the tables in Butler
and McKay, which is indee®GL,(F5).

20. <«= : Condition (a) implies thatz; contains &-cycle, condition (b) implies that
Gy C A;, and condition (c) excluded;. That leavedD; andC5 as the only possibilities
(see, for example, Jacobson, Basic Algebra |, p305, Ex 6). The derivatjves6fX* + a,
which has at mos2 real zeros, and so (from its graph) we see thaan have at mosit
real zeros. Thus complex conjugation acts as an element of datethe splitting field of
f, and this shows that we must haW/g = D:s.

— . RegardD; as a subgroup of; by letting it act on the vertices of a regular
pentagon—all subgroups ¢f; isomorphic toD; look like this one. IfG; = Ds, then
(a) holds becausPs is transitive, (b) holds becaud® C As;, and (c) holds becaude; is
solvable.

21.Fora = 1, this is the polynomia®;(X), whose Galois group is cyclic of ordér
Fora=0,itis X(X*+ X?+ X +1) = X(X +1)(X?+1), whose Galois group is cyclic
of order2.

Fora = —4, itis (X — 1)(X® + 2X? + 3X +4). The cubic does not hawel, +2, or +4
as roots, and so it is irreducible @[ X|. Hence its Galois group iS; or As. But looking
modulo2, we see it contains Zcycle, so it must bé&.

For anya, the resolvent cubic is

g(X) =X - X*+(1—4a)X +3a— 1.

Takea = —1. Thenf = X% + X3 + X2 + X — 1 is irreducible modul@®, and so it is
irreducible inQ[X]. We haveg = X? — X2 + 5X — 4, which is irreducible. Moreover
g =3X?-2X +5=3(X — 3)® + 42 > 0 always, and sg has exactly one real root.
Hence the Galois group g@fis S3, and therefore the Galois group ffis S;. [In fact, 4 is
the maximum number of integers giving distinct Galois groups: checking 2Znee see
there is &@-cycle or a4-cycle, and sd, As, A4, V, are not possible. Fabg, a can’t be an
integer.]

22.We haveNm(a + ib) = a® + b?. Hencea? + b = 1 if and onlya + ib = =2 for some
s,t € Q (Hilbert's Theorem 90). The rest is easy.

23.The degreéQ|[(,] : Q] = ¢(n), ¢, a primitiven!” root of 1, andy(n) — oo asn — oo.
24.(a) Need thatn|n, because

n=[Fpn: Fp] = [Fpn: Fpm] - [Fpm: Fp] = [Fpn: Fypm] - m.
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Use Galois theory to show there exists one, for example. (b) Only one; it consists of all the
solutions ofX?" — X = 0.

25. The polynomial is irreducible by Eisenstein’s criterion. The polynomial has only one
real root, and therefore complex conjugation is a transpositiod in This proves that

Gt =~ S3. The discriminant is-1323 = —3372. Only the subfield)[\/—3] is normal over

Q. The subfieldsQ[v/7], Q[¢v/7] Q[¢?¥/7] are not normal ovef). [The discriminant of

X3 —ais —27a* = —3(3a)?.]

26. The prime7 becomes a square in the first field, but does not: (a + bv/7)? =
a® + 7b* 4 2ab+/7, which lies inQ only if ab = 0. Hence the rational numbers that become
squares irQQ[/7] are those that are already squares or lig@>.

27.(a) See Exercise 3.
(b) Let F' = F3[X]/(X? +1). Modulo3
X—1=(X-D(X+1)(X*+ )(X*+ X +2)(X*+2X +2).

Takeao to be aroot ofX2 + X + 2.

28.SinceFE # F, E contains an elemerftwith the degree of or g > 0. Now

is a nonzero polynomial having as a root.
29. Use Eisenstein to show that’~! + - - - + 1 is irreducible, etc. Done in class.

30. The splitting field isQ[¢, a] where¢® = 1 anda® = 2. Itis generated by = (12345)
andr = (2354), whereca = Ca and7¢ = ¢2. The group has orde. It is not abelian
(becaus&)|a] is not Galois ovef)), but it is solvable (its order is: 60).

31.(a) Ahomomorphisna: R — R acts as the identity map & hence orf), and it maps
positive real numbers to positive real numbers, and therefore preserves the order. Hence,
for each real number,

{reQla<r}={reQlala) <r},

which implies thatv(a) = a.

(b) Choose a transcendence badisor C over Q. Because it is infinite, there is a
bijectiona: A — A’ from A onto a proper subset. Extendto an isomorphisn@(A) —
Q(A"), and then extend it to an isomorphigin— C’ whereC' is the algebraic closure of
Q(A") inC.

32. The groupF* is cyclic of orderl5. It has3 elements of order dividing, 1 element of
order dividing4, 15 elements of order dividing5, and1 element of order dividing?7.

33. If £, and E, are Galois extensions df, thenF; F, and E; N E, are Galois over,
and there is an exact sequence

1 — Gal(ElEg/F) — Gal(El/F) X G&l(EQ/F) E— Gal(ElﬂEQ/F) — 1.
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In this caseF; N E; = Q[¢] where( is a primitive cube root of. The degree i$8.

34. OverQ, the splitting field isQ[a, ¢] wherea® = 5 and(® = 1 (because-( is then a
primitive 6™ root of 1). The degree i$2, and the Galois group B (generator$26)(35)
and(123456)).

OverR, the Galois group i§.

35. Let the coefficients of bea, ..., a, — they lie in the algebraic closufe of F'. Let
g(X) be the product of the minimum polynomials ovérof the roots off in €.

Alternatively, the coefficients will lie in some finite extensiénof F', and we can take
the norm off (X') from E[X] to F[X].

36.If fis separablel£: ] = (Gy: 1), which is a subgroup of,,. Etc..
37.v/3 + /7 will do.

38. The splitting field ofX* — 2 is £, = Q[i, o] wherea = 2; it has degre&, and Galois
group D,. The splitting field ofX® — 5 is Fy, = QI[¢, 3]; it has degre®, and Galois group
Ds. The Galois group is the product (they could only intersedf&'3], but /3 does not
become a square ih;).

39. The multiplicative group of' is cyclic of orderg — 1. Hence it contains an element of
order4 if and only if 4|¢ — 1.

40. Takea = /2 + /5 + V7.

41.We haveE, = E1, which has degree over F', andE, = E<'"> which has degree
(n — 1)! over F, etc.. This is really a problem in group theory posing as a problem in field
theory.

42. We haveQ[¢] = Qli, ¢'] where(’ is a primitive cube root of and+i = (3 etc..
43. The splitting field isQ[¢, v/3], and the Galois group iS;.
44. Use that
(C+A+F) =+ +E+(
45. (a) is Dedekind’s theorem. (b) is Artin’s lema3.4b. (c) is O.K. becau&e- a” has
a unique root irf2.

46. The splitting field isQ[i, o] wherea* = 3, and the Galois group i®, with generators
(1234) and(13) etc..

47. From Hilbert’s theorem 90, we know that the kernel of the mapE>* — F'* consists
of elements of the forr®. The mapE* — E*, o — 22, has kernel"’*. Therefore the

kernel of N has ordel‘%, and hence its image has order 1. There is a similar proof
for the trace — | don’t know how the examiners expected you to prove it.

48. (a) is false—could be inseparable. (b) is true—couldn’t be inseparable.

49. Apply the Sylow theorem to see that the Galois group has a subgroup oftardeow
the Fundamental Theorem of Galois theory shows thexkists.

50. The greatest common divisor of the two polynomials o@eis X2 + X + 1, which
must therefore be the minimum polynomial for
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51. Theorem orp-groups plus the Fundamental Theorem of Galois Theory.

52. It was proved in class that, is generated by an element of orgesind a transposition
(4.12). There is only oné’, and it is quadratic ove.

53.Let L = Kla]. The splitting field of the minimum polynomial ef has degree at most
d!, and a set withl! elements has at mo8t' subsets. [Of course, this bound is much too
high: the subgroups are very special subsets. For example, they all coataghthey are
invariant under — a=1.]

54.The Galois group i$Z/5Z)*, which cyclic of ordert, generated by.

C+M+(E+E)=-1, (+MNNEC+)=-1
(a) Omit.
(b) Certainly, the Galois group is a product x Cj.

55. Letay,...,a5 be a transcendence basis for/Q. Their images are algebraically
independent, therefore they are a maximal algebraically independent suligt arfid
therefore they form a transcendence basis, etc..

56. CQ X 02.

57. If f(X) were reducible ove)[/7], it would have a root in it, but it is irreducible
over(Q by Eisenstein’s criterion. The discriminanti$75, which is not a square in ar,

much lesQ[v/7].

58. (a) Should beX?® — 6X* + 3. The Galois group i$5, with generator$12) and(12345)
— itis irreducible (Eisenstein) and (presumably) has exatctipnreal roots. (b) It factors
as(X + 1)(X* + X3 + X2 + X + 1). Hence the splitting field has degréeverF,, and
the Galois group is cyclic.

59. This is really a theorem in group theory, since the Galois group is a cyclic group of
ordern generated by. If n is odd, sayh = 2m + 1, thena = 6™ does.

60. It has orderR0, generator$12345) and(2354).

61. Take K; and K to be the fields corresponding to the Sylownd Sylow43 subgroups.
Note that of the possible numberss, 11, 16, 21, ... of Sylow 5-subgroups, only divides
43. There ard, 44, 87, ... subgroups of ....

62. See Exercise 14.
63. The groupF ' is cyclic of order80; hencelo, 1, 8.

64. It's Ds, with generatorg26)(35) and (123456). The polynomial is irreducible by
Eisenstein’s criterion, and its splitting field@«, (] where( + 1 is a cube root of.

65. Examplg 5.b.
66. Omit.

67. It's irreducible by Eisenstein. Its derivativeis* — 5p*, which has the rootX = +p.
These are the max and min¥, = p gives negative;X = —p gives positive. Hence the
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graph crosses theaxis3 times and so there akamaginary roots. Hence the Galois group
is 55.

68. Its roots are primitives™ roots of 1. It splits completely ifFy;. (a) (X2 + 2)(X? + 3).

69. p(a)p(a) = ¢?, andp(a)p(§) = ¢°. Hence;»(%) is the complex conjugate of(«).
Hence the automorphism induced by complex conjugation is independent of the embedding
of Q[a] into C.

70. The argument that proves the Fundamental Theorem of Algebra, shows that its Galois
group is g-group. LetFE be the splitting field ofy(X ), and letH be the Sylowp-subgroup.
ThenE" = F, and so the Galois group issagroup.

71.(a) Cy x Cy andSs. (b) No. (c). 1

72.0mit.

73. Omit.

74.1024 = 2'°. Wantoz -« = 1, i.e., Nz = 1. They are the elements of the forfh; have

o T

1 k> K* —— K*.

Hence the number &' /210 = 2.

75. Pretty standard. False; true.

76.Omit.

77.Similar to a previous problem.

78. Omit.

79.This is really a group theory problem disguised as a field theory problem.

80. (a) Prove it's irreducible by apply EisensteintoX + 1). (b) See example worked out
in class.

81. Its Dy, with generator$1234) and(12).
82. Omit.
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C Two-hour Examination
1. (a) Leto be an automorphism of a field. If +* = 1 and
o(a) +o*(a) = a + o*(a) alla € E,

show thair? = 1.
(b) Letp be a prime number and letb be rational numbers such th&t+ pb?> = 1. Show

that there exist rational numbers? such that: = zzfzjz andb = Cﬁ;fdrz.

2. Let f(X) be anirreducible polynomial of degréén Q[ X |, and letg(X) be the resolvent
cubic of f. What is the relation between the Galois groug and that ofy? Find the Galois
group of f if

@ g(X)=X3-3X +1;

(b) g(X) = X3+3X + 1.

3. (@) How many monic irreducible factors do&$>> — 1 € F,[X] have, and what are their
degrees.
(b) How many monic irreducible factors do&8>® — 1 € Q[X] have, and what are their
degrees?

4. Let E be the splitting field of X° — 3)(X® — 7) € Q[X]. What is the degree of over

Q2 How many proper subfields &f are there that are not contained in the splitting fields
of both X® — 3 and X® — 7?

[You may assume thatis not a5th power in the splitting field of(® — 3.]

5. Consider an extensioil O F of fields. Definea € () to be F-constructibleif it is
contained in a field of the form

Flyar,...,vas, € FlJay,...,Ja)

Assumef? is a finite Galois extension df and construct a field&, ' ¢ E C 2, such that
everya € () is F-constructible ands is minimal with this property.

6. Let 2 be an extension field of a fieldl. Show that every’-homomorphisnf2 — Q is
an isomorphism provided:
(a) Q2 is algebraically closed, and
(b) Q2 has finite transcendence degree aver
Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

You should prove all answers. You may use results proved in class or in the notes, but you
should indicate clearly what you are using.

Possibly useful factsThe discriminant ofX® + a X + b is —4a® — 270* and2® — 1 = 255 =
3 x5 x17.
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Solutions

1. (a) Leto be an automorphism of a field. If o* = 1 and
o(a) +c*(a) = a+ o*(a) alla € E,

show thatr? = 1.

If 02 # 1, thenl,o,0?, 0 are distinct automorphisms df, and hence are linearly
independent (Dedekird 5/14) — contradiction. {ff = 1, then the condition becomes
20 = 2, so eithewwr = 1 or the characteristic i2 (or both).]

(b) Letp be a prime number and letb be rational numbers such thét+ pb?> = 1. Show
that there exist rational numbers] such thaz = iifijﬁ andb = CQQfI‘fdQ.

Apply Hilbert’'s Theorem 90 t@)|,/p] (or Q[\/—p|, depending how you wish to correct
the sign).

2. Let f(X) be anirreducible polynomial of degréén Q[ X, and letg(X) be the resolvent
cubic of f. What is the relation between the Galois groug ahd that ofy? Find the Galois
group of f if

@ g(X)=X3-3X +1;

(b) g(X) = X3+3X + 1.

We haveG, = G¢/G;NV,whereV = {1, (12)(34),...}. The two cubic polynomials
are irreducible, because their only possible rootsdare From their discriminants, one
finds that the first has Galois groufy and the seconds. Becausef(X) is irreducible,
4|(Gy : 1) and it follows that7; = A, and.S, in the two cases.

3. () How many monic irreducible factors do&$>° — 1 € Fy[X]| have, and what are their
degrees?

Its roots are the nonzero elementdef, which has subfieldB,: > Fy2D Fy. There are
256 — 16 elements not ¥4, and their minimum polynomials all have degieeHence
there are30 factors of degre8, 3 of degreel, and1 each of degreesand]l.

(b) How many monic irreducible factors do&8>® — 1 € Q[X] have, and what are their
degrees?

Obviously,X?» — 1 = [Lijoss Pa = P1P3P5Py5 - - - Pos5, and we showed in class that
the ®, are irreducible. They have degreeg, 4, 8, 16, 32, 64, 128.

4. Let E be the splitting field of X° — 3)(X® — 7) € Q[X]. What is the degree df over
Q? How many proper subfields &f are there that are not contained in the splitting fields
of both X — 3 and X® — 7?

The splitting field ofX® — 3 is Q|¢, a], which has degreg overQ[¢] and20 over Q.
The Galois group ofX® — 7 overQ[¢, a] is (by ...) a subgroup of a cyclic group of order
5, and hence has ordéror 5. Since7 is not a5th power inQ[¢, o], it must be5. Thus
[E : Q] = 100, and

G = Gal(E/Q) = (05 X 05) X 04.

We want the nontrivial subgroups 6f not containingC; x C5. The subgroups of order
5 of C5 x C5 are lines in(IF5)?, and hence&’s x C5 has6 + 1 = 7 proper subgroups. All
are normal inG. Each subgroup of's x Cs is of the formH N (C5 x Cs) for exactly
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3 subgroupsH of G corresponding to the three possible images&/if{Cs x Cs5) = C,.
Hence we havel subgroups of7 not containing’s x C's5, and20 nontrivial ones. Typical
fields: Q[a], Qle, cos %, Qla, ¢].

[You may assume thatis not a5th power in the splitting field of(® — 3.]

5. Consider an extension > F' of fields. Definea € (2 to be F'-constructibleif it is
contained in a field of the form

Flyar,...,vas, € FlVay,...,Ja )

Assumef} is a finite Galois extension af and construct a field, F' C E C (2, such that
everya € () is F-constructible andy is minimal with this property.

Supposer has the required property. From the primitive element theorem, we know
Q) = Ela] for somea. Now a E-constructible= [ : E] is a power o2. TakeE = O,
whereH is the Sylow2-subgroup ofGal(2/F').

6. Let ) be an extension field of a fieldl. Show that every’-homomorphisnf2 — Q is
an isomorphism provided:

(a) Q is algebraically closed, and

(b) Q2 has finite transcendence degree aver

Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

Let A be a transcendence basis fof F. Becauser: 2 — () is injective,c(A) is
algebraically independent ovér, and hence (because it has the right number of elements)
is a transcendence basis fof . Now FcA] C o2 C ). Because is algebraic over
F[oA] ando(2 is algebraically closed, the two are equal. Neither condition can be dropped.
E.g.,C(X)— C(X), X — X?. E.g.,Q2 = the algebraic closure @ (X, X», X3, ...), and
consider an extension of the map — X,, X, — X3,....
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