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CONTENTS 3

Notations.

We use the standard (Bourbaki) notations:

N = {0, 1, 2, . . .},
Z = ring of integers,

R = field of real numbers,

C = field of complex numbers,

Fp = Z/pZ = field with p elements,p a prime number.

Given an equivalence relation,[∗] denotes the equivalence class containing∗.
Throughout the notes,p is a prime number:p = 2, 3, 5, 7, 11, . . ..
Let I andA be sets. A family of elements ofA indexed byI, denoted(ai)i∈I , is a

functioni 7→ ai : I → A.
X ⊂ Y X is a subset ofY (not necessarily proper).

X
df
= Y X is defined to beY , or equalsY by definition.

X ≈ Y X is isomorphic toY .
X ∼= Y X andY are canonically isomorphic (or there is a given or unique isomorphism).
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1 Basic definitions and results

Rings

A ring is a setR with two composition laws+ and· such that
(a) (R, +) is a commutative group;
(b) · is associative, and there exists1 an element1R such thata · 1R = a = 1R · a for all

a ∈ R;
(c) the distributative law holds: for alla, b, c ∈ R,

(a + b) · c = a · c + b · c
a · (b + c) = a · b + a · c.

We usually omit “·” and write1 for 1R when this causes no confusion. It is allowed that
1R = 0, but thenR = {0}.

A subring S of a ring R is a subset that contains1R and is closed under addition,
passage to the negative, and multiplication. It inherits the structure of a ring from that on
R.

A homomorphism of ringsα : R→ R′ is a map with the properties

α(a + b) = α(a) + α(b), α(ab) = α(a)α(b), α(1R) = 1R′ , all a, b ∈ R.

A ring R is said to becommutativeif multiplication is commutative:

ab = ba for all a, b ∈ R.

A commutative ring is said to be anintegral domain if 1R 6= 0 and the cancellation law
holds for multiplication:

ab = ac, a 6= 0, impliesb = c.

An ideal I in a commutative ringR is a subgroup of(R, +) that is closed under multipli-
cation by elements ofR:

r ∈ R, a ∈ I, impliesra ∈ I.

We assume that the reader has some familiarity with the elementary theory of rings. For
example, inZ (more generally, any Euclidean domain) an idealI is generated by any
“smallest” nonzero element ofI.

Fields

DEFINITION 1.1. Afield is a setF with two composition laws+ and· such that
(a) (F, +) is a commutative group;
(b) (F×, ·), whereF× = F r {0}, is a commutative group;
(c) the distributive law holds.

1We follow Bourbaki in requiring that rings have a1, which entails that we require homomorphisms to
preserve it.
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Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse.
In particular, it is an integral domain. A field contains at least two distinct elements,0 and
1. The smallest, and one of the most important, fields isF2 = Z/2Z = {0, 1}.

A subfieldS of a field F is a subring that is closed under passage to the inverse. It
inherits the structure of a field from that onF .

LEMMA 1.2. A commutative ringR is a field if and only if it has no ideals other than(0)
andR.

PROOF. SupposeR is a field, and letI be a nonzero ideal inR. If a is a nonzero element
of I, then1 = a−1a ∈ I, and soI = R. Conversely, supposeR is a commutative ring with
no nontrivial ideals. Ifa 6= 0, then(a) = R, and so there is ab in F such thatab = 1.

EXAMPLE 1.3. The following are fields:Q, R, C, Fp = Z/pZ (p prime).
A homomorphism of fieldsα : F → F ′ is simply a homomorphism of rings. Such a

homomorphism is always injective, because the kernel is a proper ideal (it doesn’t contain
1), which must therefore be zero.

The characteristic of a field

One checks easily that the map

Z→ F, n 7→ 1F + 1F + · · ·+ 1F (n copies),

is a homomorphism of rings, and so its kernel is an ideal inZ.
Case 1:The kernel of the map is(0), so that

n · 1F = 0 =⇒ n = 0 ( in Z).

Nonzero integers map to invertible elements ofF undern 7→ n · 1F : Z → F , and so this
map extends to a homomorphism

m

n
7→ (m · 1F )(n · 1F )−1 : Q ↪→ F.

Thus, in this case,F contains a copy ofQ, and we say that it hascharacteristic zero.
Case 2:The kernel of the map is6= (0), so thatn ·1F = 0 for somen 6= 0. The smallest

positive suchn will be a primep (otherwise there will be two nonzero elements inF whose
product is zero), andp generates the kernel. Thus, the mapn 7→ n · 1F : Z→ F defines an
isomorphism fromZ/pZ onto the subring

{m · 1F | m ∈ Z}

of F . In this case,F contains a copy ofFp, and we say that it hascharacteristicp.
The fieldsF2, F3, F5, . . . , Q are called theprime fields.Every field contains a copy of

exactly one of them.
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REMARK 1.4. The binomial theorem

(a + b)m = am +
(

m
1

)
am−1b +

(
m
2

)
am−2b2 + · · ·+ bm

holds in any commutative ring. Ifp is prime, thenp|
(

p
r

)
for all r, 1 ≤ r ≤ p−1. Therefore,

whenF has characteristicp,
(a + b)p = ap + bp.

Hencea 7→ ap is a homomorphismF → F , called theFrobenius endomorphismof F .
WhenF is finite, it is an isomorphism, called theFrobenius automorphism.

Review of polynomial rings

For the following, see Dummit and Foote 1991, Chapter 9. LetF be a field.

1.5. We letF [X] denote the polynomial ring in the indeterminateX with coefficients in
F . Thus,F [X] is a commutative ring containingF as a subring whose elements can be
written uniquely in the form

amXm + am−1X
m−1 + · · ·+ a0, ai ∈ F , m ∈ N.

For a ringR containingF as a subring and an elementr of R, there is a unique homomor-
phismα : F [X]→ R such thatα(X) = r andα(a) = a for all a ∈ F .

1.6. Division algorithm: given f(X) andg(X) ∈ F [X] with g 6= 0, there existq(X),
r(X) ∈ F [X] with deg(r) < deg(g) such that

f = gq + r;

moreover,q(X) andr(X) are uniquely determined. ThusF [X] is a Euclidean domain with
deg as norm, and so is a unique factorization domain.

1.7. From the division algorithm, it follows that an elementa of F is a root off (that is,
f(a) = 0) if and only if X − a dividesf . From unique factorization, it now follows thatf
has at mostdeg(f) roots (see also Exercise 3).

1.8. Euclid’s algorithm: Letf andg ∈ F [X] have gcdd(X). Euclid’s algorithm constructs
polynomialsa(X) andb(X) such that

a(X) · f(X) + b(X) · g(X) = d(X), deg(a) < deg(g), deg(b) < deg(f).

Recall how it goes. We may assumedeg(f) ≥ deg(g) since the argument is the same in
the opposite case. Using the division algorithm, we construct a sequence of quotients and
remainders

f = q0g + r0

g = q1r0 + r1

r0 = q2r1 + r2

· · ·
rn−2 = qnrn−1 + rn

rn−1 = qn+1rn
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with rn the last nonzero remainder. Then,rn dividesrn−1, hencern−2,. . . , henceg, and
hencef . Moreover,

rn = rn−2 − qnrn−1 = rn−2 − qn(rn−3 − qn−1rn−2) = · · · = af + bg

and so any common divisor off andg dividesrn: we have shownrn = gcd(f, g).
Let af + bg = d. If deg(a) ≥ deg(g), write a = gq + r with deg(r) < deg(g); then

rf + (b + qf)g = d,

andb + qf automatically has degree< deg(f).
Maple knows Euclid’s algorithm — to learn its syntax, type “?gcdex;”.

1.9. LetI be a nonzero ideal inF [X], and letf be a nonzero polynomial of least degree in
I; thenI = (f) (becauseF [X] is a Euclidean domain). When we choosef to be monic,
i.e., to have leading coefficient one, it is uniquely determined byI. Thus, there is a one-
to-one correspondence between the nonzero ideals ofF [X] and the monic polynomials in
F [X]. The prime ideals correspond to the irreducible monic polynomials.

1.10. SinceF [X] is an integral domain, we can form its field of fractionsF (X). Its ele-
ments are quotientsf/g, f andg polynomials,g 6= 0.

Factoring polynomials

The following results help in deciding whether a polynomial is irreducible, and, when it is
not, in finding its factors.

PROPOSITION1.11. Supposer ∈ Q is a root of a polynomial

amXm + am−1X
m−1 + · · ·+ a0, ai ∈ Z,

and letr = c/d, c, d ∈ Z, gcd(c, d) = 1. Thenc|a0 andd|am.

PROOF. It is clear from the equation

amcm + am−1c
m−1d + · · ·+ a0d

m = 0

thatd|amcm, and therefore,d|am. Similarly, c|a0.

EXAMPLE 1.12. The polynomialf(X) = X3 − 3X − 1 is irreducible inQ[X] because its
only possible roots are±1, andf(1) 6= 0 6= f(−1).

PROPOSITION1.13 (GAUSS’ S LEMMA ). Let f(X) ∈ Z[X]. If f(X) factors nontrivially
in Q[X], then it factors nontrivially inZ[X].

PROOF. Let f = gh in Q[X]. For suitable integersm andn, g1 =df mg andh1 =df nh
have coefficients inZ, and so we have a factorization

mnf = g1 · h1 in Z[X].
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If a primep dividesmn, then, looking modulop, we obtain an equation

0 = g1 · h1 in Fp[X].

SinceFp[X] is an integral domain, this implies thatp divides all the coefficients of at least
one of the polynomialsg1, h1, sayg1, so thatg1 = pg2 for someg2 ∈ Z[X]. Thus, we have
a factorization

(mn/p)f = g2 · h1 in Z[X].

Continuing in this fashion, we can remove all the prime factors ofmn, and so obtain a
factorization off in Z[X].

PROPOSITION1.14. If f ∈ Z[X] is monic, then any monic factor off in Q[X] lies inZ[X].

PROOF. Let g be a monic factor off in Q[X], so thatf = gh with h ∈ Q[X] also monic.
Letm, n be the positive integers with the fewest prime factors such thatmg, nf ∈ Z[X]. As
in the proof of Gauss’s Lemma, if a primep dividesmn, then it divides all the coefficients
of at least one of the polynomialsmg, nh, saymg, in which case it dividesm becauseg is
monic. Nowm

p
g ∈ Z[X], which contradicts the definition ofm.

REMARK 1.15. We sketch an alternative proof of Proposition 1.14. A complex number
α is said to be analgebraic integerif it is a root of a monic polynomial inZ[X]. The
algebraic integers form a subring ofC — for an elementary proof of this, using nothing but
the symmetric polynomials theorem (5.30), see ANT, Theorem 2.2. Now letα1, . . . , αm be
the roots off in C. By definition, they are algebraic integers. The coefficients of any monic
factor off are polynomials in (certain of) theαi, and therefore are algebraic integers. If
they lie inQ, then they lie inZ, because Proposition 1.11 shows that any algebraic integer
in Q is in Z.

PROPOSITION1.16 (EISENSTEIN’ S CRITERION). Let

f = amXm + am−1X
m−1 + · · ·+ a0, ai ∈ Z;

suppose that there is a primep such that:
– p does not divideam,
– p dividesam−1, ..., a0,
– p2 does not dividea0.

Thenf is irreducible inQ[X].

PROOF. If f(X) factors inQ[X], it factors inZ[X]:

amXm + am−1X
m−1 + · · ·+ a0 = (brX

r + · · ·+ b0)(csX
s + · · ·+ c0)

bi, ci ∈ Z, r, s < m. Sincep, but notp2, dividesa0 = b0c0, p must divide exactly one ofb0,
c0, say,b0. Now from the equation

a1 = b0c1 + b1c0,

we see thatp|b1, and from the equation

a2 = b0c2 + b1c1 + b2c0,

thatp|b2. By continuing in this way, we find thatp dividesb0, b1, . . . , br, which contradicts
the fact thatp does not divideam.
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The last three propositions hold withZ replaced by any unique factorization domain.

REMARK 1.17. There is an algorithm for factoring a polynomial inQ[X]. To see this,
considerf ∈ Q[X]. Multiply f(X) by a rational number so that it is monic, and then
replace it byDdeg(f)f(X

D
), with D equal to a common denominator for the coefficients of

f , to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

f(X) = Xm + a1X
m−1 + · · ·+ am, ai ∈ Z.

From the fundamental theorem of algebra (see 5.6), we know thatf splits completely
in C[X]:

f(X) =
m∏

i=1

(X − αi), αi ∈ C.

From the equation
0 = f(αi) = αm

i + a1α
m−1
i + · · ·+ am,

it follows that |αi| is less than some bound depending only on the degree and coefficients
of f ; in fact,

|αi| ≤ max{1, mB}, B = max |ai|.
Now if g(X) is a monic factor off(X), then its roots inC are certain of theαi, and its
coefficients are symmetric polynomials in its roots. Therefore, the absolute values of the
coefficients ofg(X) are bounded in terms of the degree and coefficients off . Since they
are also integers (by 1.14), we see that there are only finitely many possibilities forg(X).
Thus, to find the factors off(X) we (better Maple) have to do only a finite amount of
checking.

Thus, we need not concern ourselves with the problem of factoring polynomials in
Q[X] or Fp[X], since Maple knows how to do it. For example

>factor(6*Xˆ2+18*X-24) ; will find the factors of6X2 + 18X − 24, and
>Factor(Xˆ2+3*X+3) mod 7 ; will find the factors ofX2 + 3X + 3 modulo7,

i.e., inF7[X].

REMARK 1.18. One other observation is useful. Letf ∈ Z[X]. If the leading coefficient
of f is not divisible by a primep, then a nontrivial factorizationf = gh in Z[X] will give
a nontrivial factorizationf = gh in Fp[X]. Thus, iff(X) is irreducible inFp[X] for some
primep not dividing its leading coefficient, then it is irreducible inZ[X]. This test is very
useful, but it is not always effective: for example,X4 − 10X2 + 1 is irreducible inZ[X]
but it is reducible2 modulo every primep.

2In an earlier version of these notes, I said that I didn’t know an elementary proof of this, but several
correspondents sent me such proofs, the simplest of which is the following. It uses only that the product of
two nonsquares inF×p is a square, which follows from the fact thatF×p is cyclic (see Exercise 3). If2 is a
square inFp, then

X4 − 10X2 + 1 = (X2 − 2
√

2X − 1)(X2 + 2
√

2X − 1).

If 3 is a square inFp, then

X4 − 10X2 + 1 = (X2 − 2
√

3X + 1)(X2 + 2
√

3X + 1).

If neither2 nor3 are squares,6 will be a square inFp, and
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Extension fields

A field E containing a fieldF is called anextension fieldof F (or simply anextension
of F ). Such anE can be regarded in an obvious fashion as anF -vector space. We write
[E : F ] for the dimension, possibly infinite, ofE as anF -vector space, and call[E : F ] the
degreeof E overF . We often say thatE is finite overF when it has finite degree overF.

EXAMPLE 1.19. (a) The field of complex numbersC has degree2 overR (basis{1, i}).
(b) The field of real numbersR has infinite degree overQ — becauseQ is countable,

every finite-dimensionalQ-vector space is also countable, but a famous argument of Cantor
shows thatR is not countable. More explicitly, there are specific real numbersα, for
example,π, whose powers1, α, α2, . . . are linearly independent overQ (see the subsection
on transcendental numbers p15).

(c) The field ofGaussian numbers

Q(i)
df
= {a + bi ∈ C | a, b ∈ Q}

has degree2 overQ (basis{1, i}).
(d) The fieldF (X) has infinite degree overF ; in fact, even its subspaceF [X] has

infinite dimension overF (basis1, X,X2, . . .).

PROPOSITION1.20. LetL ⊃ E ⊃ F (all fields and subfields). ThenL/F is of finite degree
if and only ifL/E andE/F are both of finite degree, in which case

[L : F ] = [L : E][E : F ].

PROOF. If L is of finite degree overF , then it is certainly of finite degree overE. More-
over,E, being a subspace of a finite dimensionalF -space, is also finite dimensional.

Thus, assume thatL/E andE/F are of finite degree, and let(ei)1≤i≤m be a basis forE
as anF -vector space and let(lj)1≤j≤n be a basis forL as anE-vector space. To complete
the proof, it suffices to show that(eilj)1≤i≤m,1≤j≤n is a basis forL overF , because thenL
will be finite overF of the predicted degree.

First,(eilj)i,j spansL. Let γ ∈ L. Then, because(lj)j spansL as anE-vector space,

γ =
∑

jαjlj, someαj ∈ E,

and because(ei)i spansE as anF -vector space,

αj =
∑

iaijei, someaij ∈ F .

X4 − 10X2 + 1 = (X2 − (5 + 2
√

6))(X2 − (5− 2
√

6)).

The general study of such polynomials requires nonelementary methods. See, for example, the paper
Brandl, Rolf, Integer polynomials that are reducible modulo all primes, Amer. Math. Monthly,93 (1986),
pp286–288,
which proves that every nonprime integern ≥ 1 occurs as the degree of a polynomial inZ[X] that is
irreducible overZ but reducible modulo all primes.
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On putting these together, we find that

γ =
∑

i,jaijeilj.

Second,(eilj)i,j is linearly independent. A linear relation
∑

aijeilj = 0, aij ∈ F ,
can be rewritten

∑
j(
∑

i aijei)lj = 0. The linear independence of thelj ’s now shows
that

∑
i aijei = 0 for eachj, and the linear independence of theei’s shows that each

aij = 0.

Construction of some extension fields

Let f(X) ∈ F [X] be a monic polynomial of degreem, and let(f) be the ideal gener-
ated byf . Consider the quotient ringF [X]/(f(X)), and writex for the image ofX in
F [X]/(f(X)), i.e.,x is the cosetX + (f(X)). Then:

(a) The map
P (X) 7→ P (x) : F [X]→ F [x]

is a surjective homomorphism in whichf(X) maps to0. Therefore,f(x) = 0.
(b) From the division algorithm, we know that each elementg of F [X]/(f) is rep-

resented by a unique polynomialr of degree< m. Hence each element ofF [x] can be
expressed uniquely as a sum

a0 + a1x + · · ·+ am−1x
m−1, ai ∈ F. (*)

(c) To add two elements, expressed in the form (*), simply add the corresponding coef-
ficients.

(d) To multiply two elements expressed in the form (*), multiply in the usual way, and
use the relationf(x) = 0 to express the monomials of degree≥ m in x in terms of lower
degree monomials.

(e) Now assumef(X) is irreducible. To find the inverse of an elementα ∈ F [x], write
α in the form (*), i.e., setα = g(x) whereg(X) is a polynomial of degree≤ m − 1, and
use Euclid’s algorithm inF [X] to obtain polynomialsa(X) andb(X) such that

a(X)f(X) + b(X)g(X) = d(X)

with d(X) the gcd off andg. In our case,d(X) is 1 becausef(X) is irreducible and
deg g(X) < deg f(X). When we replaceX with x, the equality becomes

b(x)g(x) = 1.

Henceb(x) is the inverse ofg(x).
From these observations, we can conclude:

1.21. For a monic irreducible polynomialf(X) of degreem in F [X],

F [x] = F [X]/(f(X))

is a field of degreem overF . Moreover, computations inF [x] reduce to computations in
F .
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EXAMPLE 1.22. Letf(X) = X2 + 1 ∈ R[X]. ThenR[x] has:
elements:a + bx, a, b ∈ R;
addition:(a + bx) + (a′ + b′x) = (a + a′) + (b + b′)x;
multiplication: (a + bx)(a′ + b′x) = (aa′ − bb′) + (ab′ + a′b)x.

We usually writei for x andC for R[x].

EXAMPLE 1.23. Letf(X) = X3 − 3X − 1 ∈ Q[X]. We observed in (1.12) that this is
irreducible overQ, and soQ[x] is a field. It has basis{1, x, x2} as aQ-vector space. Let

β = x4 + 2x3 + 3 ∈ Q[x].

Then using thatx3− 3x− 1 = 0, we find thatβ = 3x2 + 7x + 5. BecauseX3− 3X − 1 is
irreducible,

gcd(X3 − 3X − 1, 3X2 + 7X + 5) = 1.

In fact, Euclid’s algorithm (courtesy of Maple) gives

(X3 − 3X − 1)(−7
37

X + 29
111

) + (3X2 + 7X + 5)( 7
111

X2 − 26
111

X + 28
111

) = 1.

Hence
(3x2 + 7x + 5)( 7

111
x2 − 26

111
x + 28

111
) = 1,

and we have found the inverse ofβ.

The subring generated by a subset

An intersection of subrings of a ring is again a ring. LetF be a subfield of a fieldE, and let
S be a subset ofE. The intersection of all the subrings ofE containingF andS is evidently
the smallest subring ofE containingF andS. We call it the subring ofE generated by
F and S (or generated overF by S), and we denote itF [S]. WhenS = {α1, ..., αn}, we
write F [α1, ..., αn] for F [S]. For example,C = R[

√
−1].

LEMMA 1.24. The ringF [S] consists of the elements ofE that can be written as finite
sums of the form ∑

ai1···inαi1
1 · · ·αin

n , ai1···in ∈ F, αi ∈ S. (*)

PROOF. Let R be the set of all such elements. Evidently,R is a subring containingF and
S and contained in any other such subring. ThereforeR equalsF [S].

EXAMPLE 1.25. The ringQ[π], π = 3.14159..., consists of the complex numbers that can
be expressed as a finite sum

a0 + a1π + a2π
2 + · · · anπ

n, ai ∈ Q.

The ringQ[i] consists of the complex numbers of the forma + bi, a, b ∈ Q.
Note that the expression of an element in the form (*) willnot be unique in general.

This is so already inR[i].

LEMMA 1.26. LetR be an integral domain containing a subfieldF (as a subring). IfR is
finite dimensional when regarded as anF -vector space, then it is a field.
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PROOF. Let α be a nonzero element ofR — we have to show thatα has an inverse inR.
The mapx 7→ αx : R→ R is an injective linear map of finite dimensionalF -vector spaces,
and is therefore surjective. In particular, there is an elementβ ∈ R such thatαβ = 1.

Note that the lemma applies to subrings (containingF ) of an extension fieldE of F of
finite degree.

The subfield generated by a subset

An intersection of subfields of a field is again a field. LetF be a subfield of a fieldE,
and letS be a subset ofE. The intersection of all the subfields ofE containingF andS
is evidently the smallest subfield ofE containingF andS. We call it the subfield ofE
generated byF and S (or generated overF by S), and we denote itF (S). It is the field
of fractions ofF [S] in E, since this is a subfield ofE containingF andS and contained
in any other such field. WhenS = {α1, ..., αn}, we writeF (α1, ..., αn) for F (S). Thus,
F [α1, . . . , αn] consists of all elements ofE that can be expressed as polynomials in the
αi with coefficients inF , andF (α1, . . . , αn) consists of all elements ofE that can be
expressed as the quotient of two such polynomials.

Lemma 1.26 shows thatF [S] is already a field if it is finite dimensional overF , in
which caseF (S) = F [S].

EXAMPLE 1.27. The fieldQ(π), π = 3.14 . . . consists of the complex numbers that can be
expressed as a quotient

g(π)/h(π), g(X), h(X) ∈ Q[X], h(X) 6= 0.

The ringQ[i] is already a field.
An extensionE of F is said to besimple if E = F (α) someα ∈ E. For example,

Q(π) andQ[i] are simple extensions ofQ.
Let F andF ′ be subfields of a fieldE. The intersection of the subfields ofE containing

F andF ′ is evidently the smallest subfield ofE containing bothF andF ′. We call it the
compositeof F andF ′ in E, and we denote itF ·F ′. It can also be described as the subfield
of E generated overF by F ′, or the subfield generated overF ′ by F :

F (F ′) = F · F ′ = F ′(F ).

Algebraic and transcendental elements

For a fieldF and an elementα of an extension fieldE, we have a homomorphism

f(X) 7→ f(α) : F [X]→ E.

There are two possibilities.
Case 1:The kernel of the map is(0), so that, forf ∈ F [X],

f(α) = 0 =⇒ f = 0 (in F [X]).
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In this case, we say thatα transcendental overF . The homomorphismF [X] → F [α] is
an isomorphism, and it extends to an isomorphismF (X)→ F (α).

Case 2:The kernel is6= (0), so thatg(α) = 0 for some nonzerog ∈ F [X]. In this case,
we say thatα is algebraic overF . The polynomialsg such thatg(α) = 0 form a nonzero
ideal inF [X], which is generated by the monic polynomialf of least degree suchf(α) = 0.
We callf theminimum polynomialof α overF . It is irreducible, because otherwise there
would be two nonzero elements ofE whose product is zero. The minimum polynomial is
characterized as an element ofF [X] by each of the following sets of conditions:

f is monic;f(α) = 0 and divides every other polynomialg in F [X] with g(α) = 0.
f is the monic polynomial of least degree suchf(α) = 0;
f is monic, irreducible, andf(α) = 0.

Note thatg(X) 7→ g(α) defines an isomorphismF [X]/(f) → F [α]. Since the first is a
field, so also is the second:

F (α) = F [α].

Moreover, each element ofF [α] has a unique expression

a0 + a1α + a2α
2 + · · ·+ am−1α

m−1, ai ∈ F,

wherem = deg(f). In other words,1, α, . . . , αm−1 is a basis forF [α] over F . Hence
[F (α) : F ] = m. SinceF [x] ∼= F [α], arithmetic inF [α] can be performed using the same
rules as inF [x].

EXAMPLE 1.28. Letα ∈ C be such thatα3 − 3α − 1 = 0. ThenX3 − 3X − 1 is monic,
irreducible, and hasα as a root, and so it is the minimum polynomial ofα overQ. The set
{1, α, α2} is a basis forQ[α] overQ. The calculations in Example 1.23 show that ifβ is
the elementα4 + 2α3 + 3 of Q[α], thenβ = 3α2 + 7α + 5, and

β−1 = 7
111

α2 − 26
111

α + 28
111

.

REMARK 1.29. Maple knows how to compute inQ[α]. For example,
factor(Xˆ4+4); returns the factorization

(X2 − 2X + 2)(X2 + 2X + 2).

Now type:alias(c=RootOf(Xˆ2+2*X+2)); . Then
factor(Xˆ4+4,c); returns the factorization

(X + c)(X − 2− c)(X + 2 + c)(X − c),

i.e., Maple has factoredX4 + 4 in Q[c] wherec has minimum polynomialX2 + 2X + 2.
A field extensionE/F is said to bealgebraic, orE is said to bealgebraic overF , if all

elements ofE are algebraic overF ; otherwise it is said to betranscendental(or E is said
to betranscendental overF ). Thus,E/F is transcendental if at least one element ofE is
transcendental overF .

PROPOSITION1.30. A field extensionE/F is finite if and only ifE is algebraic and finitely
generated (as a field) overF .



1 BASIC DEFINITIONS AND RESULTS 15

PROOF. =⇒: To say thatα is transcendental overF amounts to saying that its powers
1, α, α2, . . . are linearly independent overF . Therefore, ifE is finite overF , then it is
algebraic overF . It remains to show thatE is finitely generated overF . If E = F , then it
is generated by the empty set. Otherwise, there exists anα1 ∈ E r F . If E 6= F [α1], there
exists anα2 ∈ E r F [α1], and so on. Since

[F [α1] : F ] < [F [α1, α2] : F ] < · · · < [E : F ]

this process terminates.
⇐=: Let E = F (α1, ..., αn) with α1, α2, . . . αn algebraic overF . The extension

F (α1)/F is finite becauseα1 is algebraic overF , and the extensionF (α1, α2)/F (α1) is
finite becauseα2 is algebraic overF and hence overF (α1). Thus, by ( 1.20),F (α1, α2) is
finite overF . Now repeat the argument.

COROLLARY 1.31. (a) If E is algebraic overF , then any subringR of E containingF is
a field.

(b) If in L ⊃ E ⊃ F , L is algebraic overE and E is algebraic overF , thenL is
algebraic overF.

PROOF. (a) We observed above, that ifα is algebraic overF , thenF [α] is a field. Ifα ∈ R,
thenF [α] ⊂ R, and soα has an inverse inR.

(b) Any α ∈ L is a root of some monic polynomialf = Xm +am−1X
m−1 + · · ·+a0 ∈

E[X]. Now each of the extensionsF [a0, . . . , am−1, α] ⊃ F [a0, . . . , am−1] ⊃ F is finite,
and soF [a0, . . . , am−1, α] is finite (hence algebraic) overF .

Transcendental numbers

A complex number is said to bealgebraicor transcendentalaccording as it is algebraic or
transcendental overQ. First some history:

1844: Liouville showed that certain numbers, now called Liouville numbers, are tran-
scendental.

1873: Hermite showed thate is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable, but thatR is not

countable. Thus almost all numbers are transcendental (but it is usually very difficult to
prove that any particular number is transcendental).3

1882: Lindemann showed thatπ is transcendental.
1934: Gel’fond and Schneider independently showed thatαβ is transcendental ifα and

β are algebraic,α 6= 0, 1, andβ /∈ Q. (This was the seventh of Hilbert’s famous problems.)
1994: Euler’s constant

γ = lim
n→∞

(
n∑

k=1

1/k − log n)

3In 1873 Cantor proved the rational numbers countable. . . . He also showed that the algebraic numbers. . .
were countable. However his attempts to decide whether the real numbers were countable proved harder. He
had proved that the real numbers were not countable by December 1873 and published this in a paper in 1874
(http://www-gap.dcs.st-and.ac.uk/˜history/Mathematicians/Cantor.html ).

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html
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has not yet been proven to be transcendental.
1994: The numberse + π ande − π are surely transcendental, but they have not even

been proved to be irrational!

PROPOSITION1.32. The set of algebraic numbers is countable.

PROOF. Define the heighth(r) of a rational number to bemax(|m|, |n|), wherer = m/n
is the expression ofr in its lowest terms. There are only finitely many rational numbers
with height less than a fixed numberN . Let A(N) be the set of algebraic numbers whose
minimum equation overQ has degree≤ N and has coefficients of height< N . ThenA(N)
is finite for eachN . Count the elements ofA(10); then count the elements ofA(100); then
count the elements ofA(1000), and so on.4

A typical Liouville number is
∑∞

n=0
1

10n! — in its decimal expansion there are increas-
ingly long strings of zeros. We prove that the analogue of this number in base2 is tran-
scendental.

THEOREM 1.33. The numberα =
∑

1
2n! is transcendental.

PROOF. 5Suppose not, and let

f(X) = Xd + a1X
d−1 + · · ·+ ad, ai ∈ Q,

be the minimum polynomial ofα overQ. Thus[Q[α] : Q] = d. Choose a nonzero integer
D such thatD · f(X) ∈ Z[X].

Let ΣN =
∑N

n=0
1

2n! , so thatΣN → α asN → ∞, and letxN = f(ΣN). If α is
rational,6 f(X) = X−α; otherwise,f(X), being irreducible of degree> 1, has no rational
root. SinceΣN 6= α, it can’t be a root off(X), and soxN 6= 0. Evidently,xN ∈ Q; in fact
(2N !)dDxN ∈ Z, and so

|(2N !)dDxN | ≥ 1. (*)

From the fundamental theorem of algebra (see 5.6 below), we know thatf splits in
C[X], say,

f(X) =
d∏

i=1

(X − αi), αi ∈ C, α1 = α,

and so

|xN | =
d∏

i=1

|ΣN − αi| ≤ |ΣN − α1|(ΣN + M)d−1, whereM = max
i6=1
{1, |αi|}.

But

|ΣN − α1| =
∞∑

n=N+1

1

2n!
≤ 1

2(N+1)!

(
∞∑

n=0

1

2n

)
=

2

2(N+1)!
.

4More precisely, choose a bijection from some segment[0, n(1)] of N ontoA(10); extend it to a bijection
from a segment[0, n(2)] ontoA(100), and so on.

5This proof, which I learnt from David Masser, also works for
∑

1
an! for any integera ≥ 2.

6In factα is not rational because its expansion to base2 is not periodic.
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Hence

|xN | ≤
2

2(N+1)!
· (ΣN + M)d−1

and

|(2N !)dDxN | ≤ 2 · 2
d·N !D

2(N+1)!
· (ΣN + M)d−1

which tends to0 asN →∞ because2d·N !

2(N+1)! =
(

2d

2N+1

)N !

→ 0. This contradicts (*).

Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were surprised to find
that the length of the diagonal of a square of side1, namely,

√
2, is not rational. They

thus realized that they needed to extend their number system. They then hoped that the
“constructible” numbers would suffice. Suppose we are given a length, which we call1,
a straight-edge, and a compass (device for drawing circles). A number (better a length) is
constructibleif it can be constructed by forming successive intersections of

– lines drawn through two points already constructed, and
– circles with centre a point already constructed and radius a constructed length.
This led them to three famous questions that they were unable to answer: is it possible

to duplicate the cube, trisect an angle, or square the circle by straight-edge and compass
constructions? We’ll see that the answer to all three is negative.

Let F be a subfield ofR. For a positivea ∈ F ,
√

a denotes the positive square root of
a in R. TheF -plane isF × F ⊂ R× R. We make the following definitions:

A line in theF -plane is a line through two points in theF -plane. Such a line
is given by an equation:

ax + by + c = 0, a, b, c ∈ F.

A circle in theF -plane is a circle with centre anF -point and radius an element
of F . Such a circle is given by an equation:

(x− a)2 + (y − b)2 = c2, a, b, c ∈ F.

LEMMA 1.34. LetL 6= L′ beF -lines, and letC 6= C ′ beF -circles.
(a) L ∩ L′ = ∅ or consists of a singleF -point.
(b) L ∩ C = ∅ or consists of one or two points in theF [

√
e]-plane, somee ∈ F.

(c) C ∩ C ′ = ∅ or consists of one or two points in theF [
√

e]-plane, somee ∈ F .

PROOF. The points in the intersection are found by solving the simultaneous equations,
and hence by solving (at worst) a quadratic equation with coefficients inF .

LEMMA 1.35. (a) If c andd are constructible, then so also arec+d,−c, cd, and c
d

(d 6= 0).
(b) If c > 0 is constructible, then so also is

√
c.
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PROOF (SKETCH). First show that it is possible to construct a line perpendicular to a given
line through a given point, and then a line parallel to a given line through a given point.
Hence it is possible to construct a triangle similar to a given one on a side with given length.
By an astute choice of the triangles, one constructscd andc−1. For (b), draw a circle of
radius c+1

2
and centre( c+1

2
, 0), and draw a vertical line through the pointA = (1, 0) to

meet the circle atP . The lengthAP is
√

c. (For more details, see Rotman 1990, Appendix
3.)

THEOREM 1.36. (a) The set of constructible numbers is a field.
(b) A numberα is constructible if and only if it is contained in a field of the form

Q[
√

a1, . . . ,
√

ar], ai ∈ Q[
√

a1, . . . ,
√

ai−1].

PROOF. (a) Immediate from (a) of Lemma 1.35.
(b) From (a) we know that the set of constructible numbers is a field containingQ, and

it follows from (a) and Lemma 1.35 that every number inQ[
√

a1, . . . ,
√

ar] is constructible.
Conversely, it follows from Lemma 1.34 that every constructible number is in a field of the
form Q[

√
a1, . . . ,

√
ar].

COROLLARY 1.37. If α is constructible, thenα is algebraic overQ, and [Q[α] : Q] is a
power of2.

PROOF. According to Proposition 1.20,[Q[α] : Q] divides [Q[
√

a1, . . . ,
√

ar] : Q] and
[Q[
√

a1, . . . ,
√

ar] : Q] is a power of2.

COROLLARY 1.38. It is impossible to duplicate the cube by straight-edge and compass
constructions.

PROOF. The problem is to construct a cube with volume2. This requires constructing a
root of the polynomialX3− 2. But this polynomial is irreducible (by Eisenstein’s criterion
1.16 for example), and so[Q[ 3

√
2] : Q] = 3.

COROLLARY 1.39. In general, it is impossible to trisect an angle by straight-edge and
compass constructions.

PROOF. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore, to
trisect3α, we have to construct a solution to

cos 3α = 4 cos3 α− 3 cos α.

For example, take3α = 60 degrees. To constructα, we have to solve8x3 − 6x − 1 = 0,
which is irreducible (apply 1.11).

COROLLARY 1.40. It is impossible to square the circle by straight-edge and compass con-
structions.

PROOF. A square with the same area as a circle of radiusr has side
√

πr. Sinceπ is
transcendental7, so also is

√
π.

7Proofs of this can be found in many books on number theory, for example, in 11.14 of
Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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We now consider another famous old problem, that of constructing a regular polygon.
Note thatXm − 1 is not irreducible; in fact

Xm − 1 = (X − 1)(Xm−1 + Xm−2 + · · ·+ 1).

LEMMA 1.41. If p is prime thenXp−1 + · · ·+ 1 is irreducible; henceQ[e2πi/p] has degree
p− 1 overQ.

PROOF. Setf(X) = Xp−1 + · · ·+ 1, so that

f(X + 1) =
(X + 1)p − 1

X
= Xp−1 + · · ·+ a2X

2 + a1X + p,

with ai =
(

p
i+1

)
. Nowp|ai for i = 1, ..., p−2, and sof(X+1) is irreducible by Eisenstein’s

criterion 1.16.

In order to construct a regularp-gon,p an odd prime, we need to construct

cos 2π
p

= (e
2πi
p + (e

2πi
p )−1)/2.

But
Q[e

2πi
p ] ⊃ Q[cos 2π

p
] ⊃ Q,

and the degree ofQ[e
2πi
p ] overQ[cos 2π

p
] is 2 — the equation

α2 − 2 cos 2π
p
· α + 1 = 0, α = e

2πi
p ,

shows that it is≤ 2, and it is not1 becauseQ[e
2πi
p ] is not contained inR. Hence

[Q[cos 2π
p

] : Q] =
p− 1

2
.

Thus, if the regularp-gon is constructible, then(p− 1)/2 = 2k for somek (later (5.12),
we shall see a converse), which impliesp = 2k+1 + 1. But 2r + 1 can be a prime only ifr
is a power of2, because otherwiser has an odd factort and fort odd,

Y t + 1 = (Y + 1)(Y t−1 − Y t−2 + · · ·+ 1);

whence
2st + 1 = (2s + 1)((2s)t−1 − (2s)t−2 + · · ·+ 1).

Thus if the regularp-gon is constructible, thenp = 22k
+ 1 for somek. Fermat conjectured

that all numbers of the form22k
+1 are prime, and claimed to show that this is true fork ≤ 5

— for this reason primes of this form are calledFermat primes.For 0 ≤ k ≤ 4, the num-
bersp = 3, 5, 17, 257, 65537, are prime but Euler showed that232 + 1 = (641)(6700417),
and we don’t know of any more Fermat primes.

Gauss showed that

cos
2π

17
= − 1

16
+

1

16

√
17+

1

16

√
34− 2

√
17+

1

8

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17

when he was 18 years old. This success encouraged him to become a mathematician.
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Algebraically closed fields

We say that a polynomialsplits in F [X] if it is a product of polynomials of degree1 in
F [X].

PROPOSITION1.42. For a fieldΩ, the following statements are equivalent:
(a) Every nonconstant polynomial inΩ[X] splits inΩ[X].
(b) Every nonconstant polynomial inΩ[X] has at least one root inΩ.
(c) The irreducible polynomials inΩ[X] are those of degree1.
(d) Every field of finite degree overΩ equalsΩ.

PROOF. The implications (a)=⇒ (b) =⇒ (c) =⇒ (a) are obvious.
(c) =⇒ (d). LetE be a finite extension ofΩ. The minimum polynomial of any elementα
of E has degree1, and soα ∈ F .
(d) =⇒ (c). Let f be an irreducible polynomial inΩ[X]. ThenΩ[X]/(f) is an extension
field of Ω of degreedeg(f) (see 1.30), and sodeg(f) = 1.

DEFINITION 1.43. (a) A fieldΩ is said to bealgebraically closedwhen it satisfies the
equivalent statements of Proposition 1.42.

(b) A field Ω is said to be analgebraic closureof a subfieldF when it is algebraically
closed and algebraic overF .

For example, the fundamental theorem of algebra (see 5.6 below) says thatC is alge-
braically closed. It is an algebraic closure ofR.

PROPOSITION1.44. If Ω is algebraic overF and every polynomialf ∈ F [X] splits in
Ω[X], thenΩ is algebraically closed (hence an algebraic closure ofF ).

PROOF. Let f ∈ Ω[X]. We have to show thatf has a root inΩ. We know (see 1.21) thatf
has a rootα in some finite extensionΩ′ of Ω. Set

f = anX
n + · · ·+ a0, ai ∈ Ω,

and consider the fields

F ⊂ F [a0, . . . , an] ⊂ F [a0, . . . , an, α].

Each extension is algebraic and finitely generated, and hence finite (by 1.30). Thereforeα
lies in a finite extension ofF , and so is algebraic overF — it is a root of a polynomial
g with coefficients inF . By assumption,g splits inΩ[X], and so all its roots lie inΩ. In
particular,α ∈ Ω.

PROPOSITION1.45. LetΩ ⊃ F ; then

{α ∈ Ω | α algebraic overF}

is a field.

PROOF. If α andβ are algebraic overF , thenF [α, β] is a field (by 1.31) of finite degree
over F (by 1.30). Thus, every element ofF [α, β] is algebraic overF , includingα ± β,
α/β, αβ.
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The field constructed in the lemma is called thealgebraic closure ofF in Ω.

COROLLARY 1.46. Let Ω be an algebraically closed field. For any subfieldF of Ω, the
algebraic closure ofF in Ω is an algebraic closure ofF.

PROOF. From its definition, we see that it is algebraic overF and every polynomial in
F [X] splits in it. Now Proposition 1.44 shows that it is an algebraic closure ofF .

Thus, when we admit the fundamental theorem of algebra (5.6), every subfield ofC has
an algebraic closure (in fact, a canonical algebraic closure). Later (§6) we shall show that
the axiom of choice implies that every field has an algebraic closure.

Exercises 1–4

Exercises marked with an asterisk were required to be handed in.
1*. Let E = Q[α], whereα3−α2 +α+2 = 0. Express(α2 +α+1)(α2−α) and(α−1)−1

in the formaα2 + bα + c with a, b, c ∈ Q.

2*. Determine[Q(
√

2,
√

3) : Q].

3*. Let F be a field, and letf(X) ∈ F [X].
(a) For anya ∈ F , show that there is a polynomialq(X) ∈ F [X] such that

f(X) = q(X)(X − a) + f(a).

(b) Deduce thatf(a) = 0 if and only if (X − a)|f(X).
(c) Deduce thatf(X) can have at mostdeg f roots.
(d) LetG be a finite abelian group. IfG has at mostm elements of order dividingm for

each divisorm of (G : 1), show thatG is cyclic.
(e) Deduce that a finite subgroup ofF×, F a field, is cyclic.

4*. Show that with straight-edge, compass, and angle-trisector, it is possible to construct a
regular7-gon.
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2 Splitting fields; multiple roots

Maps from simple extensions.

Let E andE ′ be fields containingF . An F -homomorphismis a homomorphism

ϕ : E → E ′

such thatϕ(a) = a for all a ∈ F . Thus anF -homorphism maps a polynomial∑
ai1···imαi1

1 · · ·αim
m , ai1···im ∈ F,

to ∑
ai1···imϕ(α1)

i1 · · ·ϕ(αm)im .

An F -isomorphismis a bijectiveF -homomorphism. Note that ifE andE ′ have the same
finite degree overF , then everyF -homomorphism is anF -isomorphism.

PROPOSITION2.1. LetF (α) be a simple field extension of a fieldF , and letΩ be a second
field containingF .

(a) Letα be transcendental overF . For everyF -homomorphismϕ : F (α)→ Ω, ϕ(α) is
transcendental overF , and the mapϕ 7→ ϕ(α) defines a one-to-one correspondence

{F -homomorphismsϕ : F (α)→ Ω} ↔ {elements ofΩ transcendental overF}.

(b) Letα be algebraic overF with minimum polynomialf(X). For everyF -homomorphism
ϕ : F [α] → Ω, ϕ(α) is a root off(X) in Ω, and the mapϕ 7→ ϕ(α) defines a one-
to-one correspondence

{F -homomorphismsϕ : F [α]→ Ω} ↔ {roots off in Ω}.

In particular, the number of such maps is the number of distinct roots off in Ω.

PROOF. (a) To say thatα is transcendental overF means thatF [α] is isomorphic to the
polynomial ring in the indeterminateα with coefficients inF . For anyγ ∈ Ω, there is a
uniqueF -homomorphismϕ : F [α]→ Ω sendingα to γ (see 1.5). This extends to the field
of fractionsF (α) of F [α] if and only if all nonzero elements ofF [α] are sent to nonzero
elements ofΩ, which is so if and only ifγ is transcendental.

(b) Let f(X) =
∑

aiX
i, and consider anF -homomorphismϕ : F [α] → Ω. On ap-

plying ϕ to the equation
∑

aiα
i = 0, we obtain the equation

∑
aiϕ(α)i = 0, which

shows thatϕ(α) is a root off(X) in Ω. Conversely, ifγ ∈ Ω is a root off(X), then
the mapF [X] → Ω, g(X) 7→ g(γ), factors throughF [X]/(f(X)). When composed with
the inverse of the isomorphismX + f(X) 7→ α : F [X]/(f(X)) → F [α], it becomes a
homomorphismF [α]→ Ω sendingα to γ.

We shall need a slight generalization of this result.

PROPOSITION2.2. Let F (α) be a simple field extension of a fieldF , and letϕ0 : F → Ω
be a homomorphism ofF into a second fieldΩ.
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(a) If α is transcendental overF , then the mapϕ 7→ ϕ(α) defines a one-to-one corre-
spondence

{extensionsϕ : F (α)→ Ω of ϕ0} ↔ {elements ofΩ transcendental overϕ0(F )}.

(b) If α is algebraic overF , with minimum polynomialf(X), then the mapϕ 7→ ϕ(α)
defines a one-to-one correspondence

{extensionsϕ : F [α]→ Ω of ϕ0} ↔ {roots ofϕ0f in Ω}.

In particular, the number of such maps is the number of distinct roots ofϕ0f in Ω.
By ϕ0f we mean the polynomial obtained by applyingϕ0 to the coefficients off :

if f =
∑

aiX
i then ϕ0f =

∑
ϕ(ai)X

i. By an extension ofϕ0 to F (α) we mean a
homomorphismϕ : F (α)→ Ω such thatϕ|F = ϕ0.

The proof of the proposition is essentially the same as that of the preceding proposition.

Splitting fields

Let f be a polynomial with coefficients inF . A field E containingF is said tosplit f if f
splits inE[X]: f(X) =

∏m
i=1(X − αi) with αi ∈ E. If, in addition,E is generated by the

roots off ,
E = F [α1, . . . , αm],

then it is called asplitting field for f . Note that
∏

fi(X)mi (mi ≥ 1) and
∏

fi(X) have
the same splitting fields.

EXAMPLE 2.3. (a) Letf(X) = aX2 + bX + c ∈ Q[X], and letα =
√

b2 − 4ac. The
subfieldQ[α] of C is a splitting field forf .

(b) Let f(X) = X3 + aX2 + bX + c ∈ Q[X] be irreducible, and letα1, α2, α3 be
its roots inC. ThenQ[α1, α2, α3] = Q[α1, α2] is a splitting field forf(X). Note that
[Q[α1] : Q] = 3 and that[Q[α1, α2] : Q[α1]] = 1 or 2, and so[Q[α1, α2] : Q] = 3 or 6.
We’ll see later (4.2) that the degree is3 if and only if the discriminant off(X) is a square
in Q. For example, the discriminant ofX3 + bX + c is−4b3 − 27c2, and so the splitting
field of X3 + 10X + 1 has degree6 overQ.

PROPOSITION2.4. Every polynomialf ∈ F [X] has a splitting fieldEf , and

[Ef : F ] ≤ (deg f)!.

PROOF. Let g1 be an irreducible factor off(X), and let

F1 = F [X]/(g1(X)) = F [α1], α1 = X + (g1).

Thenα1 is a root off(X) in F1, and we definef1(X) to be the quotientf(X)/(X − α1)
(in F1[X]). The same construction applied tof1 ∈ F1[X] gives us a fieldF2 = F1[α2] with
α2 a root off1 (and hence also off ). By continuing in this fashion, we obtain a splitting
field Ef .

Let n = deg f . Then[F1 : F ] = deg g1 ≤ n, [F2 : F1] ≤ n − 1, ..., and so[Ef : E] ≤
n!.
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REMARK 2.5. For a given integern, there may or may not exist polynomials of degreen
in F [X] whose splitting field has degreen! — this depends onF . For example, there do
not forn > 1 if F = C (see 5.6), nor forn > 2 if F = Fp (see 4.18) orF = R. However,
later (4.28) we shall see how to write down large numbers of polynomials (in fact infinitely
many) of degreen in Q[X] whose splitting fields have degreen!.

EXAMPLE 2.6. (a) Letf(X) = (Xp − 1)/(X − 1) ∈ Q[X], p prime. If ζ is one root off ,
then the remainder areζ2, ζ3, . . . , ζp−1, and so the splitting field off is Q[ζ].

(b) SupposeF is of characteristicp, and letf = Xp −X − a ∈ F [X]. If α is one root
of f , then the remainder areα + 1, ..., α + p− 1, and so any field generated overF by α is
a splitting field forf (andF [α] ∼= F [X]/(f)).

(c) If α is one root ofXn − a, then the remaining roots are all of the formζα, where
ζn = 1. Therefore, ifF contains all thenth roots of1 (by which we mean thatXn−1 splits
in F [X]), thenF [α] is a splitting field forXn − a. Note that ifp is the characteristic ofF ,
thenXp − 1 = (X − 1)p, and soF automatically contains all thepth roots of1.

PROPOSITION2.7. Let f ∈ F [X]. Assume thatE ⊃ F is generated by roots off , and let
Ω ⊃ F be a field in whichf splits.

(a) There exists at least oneF -homomorphismϕ : E → Ω.
(b) The number ofF -homomorphismsE → Ω is≤ [E : F ], and equals[E : F ] if f has

deg(f) distinct roots inΩ.
(c) If E andΩ are both splitting fields forf , then eachF -homomorphismE → Ω is an

isomorphism. In particular, any two splitting fields forf areF -isomorphic.

PROOF. By f havingdeg(f) distinct roots inΩ, we mean that

f(X) =
∏deg(f)

i=1 (X − αi), αi ∈ Ω, αi 6= αj if i 6= j.

If f has this property, then so also does any factor off in Ω[X].
By assumption,E = F [α1, ..., αm] with theαi roots off(X). The minimum polyno-

mial of α1 is an irreducible polynomialf1 dividing f . As f (hencef1) splits inΩ, Propo-
sition 2.1 shows that there exists anF -homomorphismϕ1 : F [α1]→ Ω, and the number of
ϕ1’s is≤ deg(f1) = [F [α1] : F ], with equality holding whenf1 has distinct roots inΩ.

The minimum polynomial ofα2 overF [α1] is an irreducible factorf2 of f in F [α1][X].
According to Proposition 2.2, eachϕ1 extends to a homomorphismϕ2 : F [α1, α2] → Ω,
and the number of extensions is≤ deg(f2) = [F [α1, α2] : F [α1]], with equality holding
whenf2 hasdeg(f2) distinct roots inΩ.

On combining these statements we conclude that there exists anF -homomorphism
ϕ : F [α1, α2] → Ω, and that the number of such homomorphisms is≤ [F [α1, α2] : F ],
with equality holding whenf hasdeg(f) distinct roots inΩ.

After repeating the argument several times, we obtain (a) and (b).
Any homomorphismE → Ω is injective, and so, if there exists such a homomorphism,

[E : F ] ≤ [Ω : F ]. Now (a) shows that ifE andΩ are both splitting fields forf , then
[E : F ] = [Ω: F ], and so anyF -homomorphismE → Ω is an isomorphism.

COROLLARY 2.8. LetE andL be extension fields ofF , with E finite overF .
(a) The number ofF -homomorphismsE → L is at most[E : F ].
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(b) There exists a finite extensionΩ/L and anF -homomorphismE → Ω.

PROOF. Write E = F [α1, . . . , αm], andf be the product of the minimum polynomials
of the αi. Let Ω be a splitting field forf regarded as an element ofL[X]. The propo-
sition shows that there is anF -homomorphismE → Ω, and the number of such homo-
morphisms is≤ [E : F ]. Since everyF -homomorphismE → L can be regarded as an
F -homomorphismE → Ω, this proves both (a) and (b).

REMARK 2.9. LetE1, E2, . . . , Em be finite extensions ofF , and letL be an extension of
F . The corollary implies that there is a finite extensionΩ/L containing an isomorphic copy
of everyEi.

Warning! If E andE ′ are both splitting fields off ∈ F [X], then we know there is
anF -isomorphismE → E ′, but there will in general be nopreferredsuch isomorphism.
Error and confusion can result if you simply identify the fields.

Multiple roots

Let f, g ∈ F [X]. Even whenf andg have no common factor inF [X], one might expect
that they could acquire a common factor inΩ[X] for someΩ ⊃ F . In fact, this doesn’t
happen — greatest common divisors don’t change when the field is extended.

PROPOSITION2.10. Let f and g be polynomials inF [X], and letΩ ⊃ F . If r(X) is
the gcd off and g computed inF [X], then it is also the gcd off and g in Ω[X]. In
particular, distinct monic irreducible polynomials inF [X] do not acquire a common root
in any extension field ofF.

PROOF. Let rF (X) andrΩ(X) be the greatest common divisors off andg in F [X] and
Ω[X] respectively. CertainlyrF (X)|rΩ(X) in Ω[X], but Euclid’s algorithm (1.8) shows
that there are polynomialsa andb in F [X] such that

a(X)f(X) + b(X)g(X) = rF (X),

and sorΩ(X) dividesrF (X) in Ω[X].
For the second statement, note that the hypotheses imply thatgcd(f, g) = 1 (in F [X]),

and sof andg can’t acquire a common factor in any extension field.

The proposition allows us to writegcd(f, g), without reference to a field.
Let f ∈ F [X], and let

f(X) = a
r∏

i=1

(X − αi)
mi , αi distinct,mi ≥ 1,

r∑
i=1

mi = deg(f), (*)

be a splitting off in some extension fieldΩ of F . We say thatαi is a root off of multiplicity
mi. If mi > 1, αi is said to be amultiple rootof f , and otherwise it is asimple root.

The unordered sequence of integersm1, . . . ,mr in (*) is independent of the extension
field Ω in which f splits. Certainly, it is unchanged whenΩ is replaced with its subfield
F [α1, . . . , αm], butF [α1, . . . , αm] is a splitting field forf , and any two splitting fields are
isomorphic (2.7c).
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We say thatf has a multiple rootwhen at least of themi > 1, and we say thatf has
only simple rootswhen allmi = 1.

We wish to determine when a polynomial has a multiple root. Iff has a multiple factor
in F [X], sayf =

∏
fi(X)mi with somemi > 1, then obviously it will have a multiple

root. If f =
∏

fi with thefi distinct monic irreducible polynomials, then Proposition 2.10
shows thatf has a multiple root if and only if at least one of thefi has a multiple root.
Thus, it suffices to determine when an irreducible polynomial has a multiple root.

EXAMPLE 2.11. LetF be of characteristicp 6= 0, and assume thatF has contains an
elementa that is not apth-power, for example,a = T in the fieldFp(T ). ThenXp − a

is irreducible inF [X], but Xp − a
1.4
= (X − α)p in its splitting field. Thus an irreducible

polynomial can have multiple roots.
Define the derivativef ′(X) of a polynomialf(X) =

∑
aiX

i to be
∑

iaiX
i−1. When

f has coefficients inR, this agrees with the definition in calculus. The usual rules for
differentiating sums and products still hold, but note that in characteristicp the derivative
of Xp is zero.

PROPOSITION2.12. For a nonconstant irreducible polynomialf in F [X], the following
statements are equivalent:

(a) f has a multiple root;
(b) gcd(f, f ′) 6= 1;
(c) F has characteristicp 6= 0 andf is a polynomial inXp;
(d) all the roots off are multiple.

PROOF. (a) =⇒ (b). Letα be a multiple root off , and writef = (X−α)mg(X), m > 1,
in some splitting field. Then

f ′(X) = m(X − α)m−1g(X) + (X − α)mg′(X).

Hencef ′(α) = 0, and sogcd(f, f ′) 6= 1.
(b) =⇒ (c). Sincef is irreducible anddeg(f ′) < deg(f),

gcd(f, f ′) 6= 1 =⇒ f ′ = 0 =⇒ f is a polynomial inXp.

(c) =⇒ (d). Supposef(X) = g(Xp), and letg(X) =
∏

(X − ai)
mi in some splitting

field for f . Then

f(X) = g(Xp) =
∏

(Xp − ai)
mi =

∏
(X − αi)

pmi

whereαp
i = ai. Hence every root off(X) has multiplicity at leastp.

(d) =⇒ (a). Obvious.

DEFINITION 2.13. A polynomialf ∈ F [X] is said to beseparable8 overF if none of its
irreducible factors has a multiple root (in a splitting field).

The preceding discussion shows thatf ∈ F [X] will be separable unless

8This is the standard definition, although some authors, for example, Dummit and Foote 1991, 13.5, give
a different definition.
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(a) the characteristic ofF is p 6= 0, and
(b) at least one of the irreducible factors off is a polynomial inXp.

Note that, iff ∈ F [X] is separable, then it remains separable over every fieldΩ containing
F (condition (b) of 2.12 continues to hold).

DEFINITION 2.14. A fieldF is said to beperfectif all polynomials inF [X] are separable
(equivalently, all irreducible polynomials inF [X] are separable).

PROPOSITION2.15. A field of characteristic zero is always perfect, and a fieldF of char-
acteristicp 6= 0 is perfect if and only ifF = F p, i.e., every element ofF is apth power.

PROOF. We may supposeF is of characteristicp 6= 0. If F contains an elementa that is
not apth power, thenXp − a ∈ F [X] is not separable (see 2.11). Conversely, ifF = F p,
then every polynomial inXp with coefficients inF is apth power inF [X] —

∑
aiX

p =
(
∑

biX)p if ai = bp
i — and so it is not irreducible.

EXAMPLE 2.16. (a) A finite fieldF is perfect, because the Frobenius endomorphism
a 7→ ap : F → F is injective and therefore surjective (by counting).

(b) A field that can be written as a union of perfect fields is perfect. Therefore, every
field algebraic overFp is perfect.

(c) Every algebraically closed field is perfect.
(d) If F0 has characteristicp 6= 0, thenF = F0(X) is not perfect, becauseX is not apth

power.

Exercises 5–10

5*. Let F be a field of characteristic6= 2.
(a) LetE be quadratic extension ofF (i.e., [E : F ] = 2); show that

S(E) = {a ∈ F× | a is a square inE}

is a subgroup ofF× containingF×2.
(b) Let E andE ′ be quadratic extensions ofF ; show that there is anF -isomorphism

ϕ : E → E ′ if and only if S(E) = S(E ′).
(c) Show that there is an infinite sequence of fieldsE1, E2, . . . with Ei a quadratic ex-

tension ofQ such thatEi is not isomorphic toEj for i 6= j.
(d) Letp be an odd prime. Show that, up to isomorphism, there is exactly one field with

p2 elements.

6*. (a) LetF be a field of characteristicp. Show that ifXp −X − a is reducible inF [X],
then it splits inF [X].

(b) For any primep, show thatXp −X − 1 is irreducible inQ[X].

7*. Construct a splitting field forX5 − 2 overQ. What is its degree overQ?

8*. Find a splitting field ofXpm − 1 ∈ Fp[X]. What is its degree overFp?

9. Let f ∈ F [X], whereF is a field of characteristic0. Let d(X) = gcd(f, f ′). Show that
g(X) = f(X)d(X)−1 has the same roots asf(X), and these are all simple roots ofg(X).
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10*. Let f(X) be an irreducible polynomial inF [X], whereF has characteristicp. Show
thatf(X) can be writtenf(X) = g(Xpe

) whereg(X) is irreducible and separable. Deduce
that every root off(X) has the same multiplicitype in any splitting field.
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3 The fundamental theorem of Galois theory

In this section, we prove the fundamental theorem of Galois theory, which gives a one-to-
one correspondence between the subfields of the splitting field of a separable polynomial
and the subgroups of the Galois group off .

Groups of automorphisms of fields

Consider fieldsE ⊃ F . An F -isomorphismE → E is called anF -automorphismof E.
TheF -automorphisms ofE form a group, which we denoteAut(E/F ).

EXAMPLE 3.1. (a) There are two obvious automorphisms ofC, namely, the identity map
and complex conjugation. We’ll see later (8.18) that by using the Axiom of Choice one can
construct uncountably many more.

(b) Let E = C(X). ThenAut(E/C) consists of the maps9 X 7→ aX+b
cX+d

, ad − bc 6= 0
(Jacobson 1964, IV, Theorem 7, p158), and so

Aut(E/C) = PGL2(C),

the group of invertible2×2 matrices with complex coefficients modulo its centre. Analysts
will note that this is the same as the automorphism group of the Riemann sphere. This
is not a coincidence: the field of meromorphic functions on the Riemann sphereP1

C is
C(z) ∼= C(X), and so there is certainly a mapAut(P1

C) → Aut(C(z)/C), which one can
show to be an isomorphism.

(c) The groupAut(C(X1, X2)/C) is quite complicated — there is a map

PGL3(C) = Aut(P2
C) ↪→ Aut(C(X1, X2)/C),

but this is very far from being surjective. When there are moreX ’s, the group is unknown.
(The groupAut(C(X1, . . . , Xn)/C) is the group ofbirational automorphisms ofPn

C. It is
called theCremona group. Its study is part of algebraic geometry.)

In this section, we shall be concerned with the groupsAut(E/F ) whenE is a finite
extension ofF .

PROPOSITION3.2. If E is a splitting field of a monic separable polynomialf ∈ F [X],
thenAut(E/F ) has order[E : F ].

PROOF. Let f =
∏

fmi
i , with the fi monic irreducible and distinct. The splitting field

of f is the same as the splitting field of
∏

fi. Hence we may assumef is a product of
distinct monic separable irreducible polynomials, and so hasdeg f distinct roots inE.
Now Proposition 2.7 shows that there are[E : F ] distinct F -homomorphismsE → E.
BecauseE has finite degree overF , they are automatically isomorphisms.

EXAMPLE 3.3. (a) Consider a simple extensionE = F [α], and letf be a polynomial with
coefficients inF havingα as a root. Iff has no root inE other thanα, thenAut(E/F ) = 1.

9By this I mean the map that sends a rational functionf(X) to f(aX+b
cX+d ).
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For example, if 3
√

2 denotes the real cube root of2, thenAut(Q[ 3
√

2]/Q) = 1. Thus, in the
proposition, it is essential thatE be asplitting field.

(b) LetF be a field of characteristicp 6= 0, and leta be an element ofF that is not apth

power. Thenf = Xp − a has only one root in a splitting fieldE, and soAut(E/F ) = 1.
Thus, in the proposition, it is essential thatE be a splitting field of aseparablepolynomial.

WhenG is a group of automorphisms of a fieldE, we write

EG = Inv(G) = {α ∈ E | σα = α, all σ ∈ G}.

It is a subfield ofE, called the subfield ofG-invariantsof E or thefixed fieldof G.
In this section, we shall show that, whenE is the splitting field of a separable polyno-

mial in F [X] andG = Aut(E/F ), then the maps

M 7→ Aut(E/M), H 7→ Inv(H)

give a one-to-one correspondence between the set of intermediate fieldsM , F ⊂ M ⊂ E,
and the set of subgroupsH of G.

PROPOSITION3.4 (E. ARTIN). LetG be a finite group of automorphisms of a fieldE, and
let F = EG; then[E : F ] ≤ (G : 1).

PROOF. Let G = {σ1 = 1, . . . , σm}, and letα1, . . . , αn ben > m elements ofE. We shall
show that theαi are linearly dependent overF . In the system of linear equations (*)

σ1(α1)X1 + · · ·+ σ1(αn)Xn = 0

· · · · · ·
σm(α1)X1 + · · ·+ σm(αn)Xn = 0

there arem equations andn > m unknowns, and hence there are nontrivial solutions inE.
Choose a nontrivial solution(c1, . . . , cn) with the fewest possible nonzero elements. After
renumbering theαi’s, we may suppose thatc1 6= 0, and then (after multiplying by a scalar)
thatc1 ∈ F . With these normalizations, we’ll show that allci ∈ F . Then the first equation

α1c1 + · · ·+ αncn = 0

(recall thatσ1 = 1) will be a linear relation on theαi.
If not all ci are inF , thenσk(ci) 6= ci for somek andi, k 6= 1 6= i. On applyingσk to

the equations

σ1(α1)c1 + · · ·+ σ1(αn)cn = 0

· · · · · ·
σm(α1)c1 + · · ·+ σm(αn)cn = 0

and using that{σkσ1, . . . , σkσm} is a permutation of{σ1, . . . , σm}, we find that

(c1, σk(c2), . . . , σk(ci), . . .)

is also a solution to the system of equations (*). On subtracting it from the first, we obtain
a solution(0, . . . , ci − σk(ci), . . .), which is nonzero (look at theith coordinate), but has
more zeros than the first solution (look at the first coordinate) — contradiction.
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COROLLARY 3.5. For any finite groupG of automorphisms of a fieldE, G = Aut(E/EG).

PROOF. We know that:
– [E : EG] ≤ (G : 1) (by 3.4),
– G ⊂ Aut(E/EG) (obvious),
– (Aut(E/EG) : 1) ≤ [E : EG] (by 2.8a).

The inequalities

[E : EG] ≤ (G : 1) ≤ (Aut(E/EG) : 1) ≤ [E : EG]

must be equalities, and soG = Aut(E/EG).

Separable, normal, and Galois extensions

DEFINITION 3.6. An algebraic extensionE/F is said to beseparableif the minimum
polynomial of every element ofE is separable; otherwise, it isinseparable.

Thus, an algebraic extensionE/F is separable if every irreducible polynomial inF [X]
having a root inE is separable, and it is inseparable if

– F is nonperfect, and in particular has characteristicp 6= 0, and
– there is an elementα of E whose minimal polynomial is of the formg(Xp), g ∈

F [X].
For example,E = Fp(T ) is an inseparable extension ofFp(T

p).

DEFINITION 3.7. An algebraic extensionE/F is normal if the minimum polynomial of
every element ofE splits inE[X].

Thus, an algebraic extensionE/F is normal if every irreducible polynomialf ∈ F [X]
having a root inE splits inE.

Let f be an irreducible polynomial of degreem in F [X]. If f has a root inE, then

E/F separable =⇒ roots off distinct

E/F normal =⇒ f splits inE

 =⇒ f hasm distinct roots inE.

Therefore,E/F is normal and separable if and only if, for eachα ∈ E, the minimum
polynomial ofα has[F [α] : F ] distinct roots inE.

EXAMPLE 3.8. (a) The fieldQ[ 3
√

2], where 3
√

2 is the real cube root of 2, is separable but
not normal overQ (X3 − 2 doesn’t split inQ[α]).

(b) The fieldFp(T ) is normal but not separable overFp(T
p) — the minimum polyno-

mial of T is the inseparable polynomialXp − T p.

DEFINITION 3.9. LetF be a field. A finite extensionE of F is said toGalois if F is the
fixed field of the group ofF -automorphisms ofE. This group is then called theGalois
groupof E overF , and it is denotedGal(E/F ).

THEOREM 3.10. For an extensionE/F , the following statements are equivalent:
(a) E is the splitting field of a separable polynomialf ∈ F [X].
(b) F = EG for some finite groupG of automorphisms ofE.
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(c) E is normal and separable, and of finite degree, overF .
(d) E is Galois overF .

PROOF. (a) =⇒ (b,d). LetG = Aut(E/F ), and letF ′ = EG ⊃ F . ThenE is also the
splitting field off regarded as a polynomial with coefficients inF ′, andf is still separable
when it is regarded in this way. Hence Proposition 3.2 shows that

[E : F ′] = # Aut(E/F ′)

[E : F ] = # Aut(E/F ).

SinceAut(E/F ′) = Aut(E/F ) = G, we conclude thatF = F ′, and soF = EG.
(d) =⇒ (b). According to (2.8a) ,Gal(E/F ) is finite, and so this is obvious.
(b) =⇒ (c). By Proposition 3.4, we know that[E : F ] ≤ (G : 1); in particular, it is

finite. Letα ∈ E and letf be the minimum polynomial ofα; we have to prove thatf splits
into distinct factors inE[X]. Let {α1 = α, ..., αm} be the orbit ofα under the action ofG
onE, and let

g(X) =
∏

(X − αi) = Xm + a1X
m−1 + · · ·+ am.

Any σ ∈ G merely permutes theαi. Since theai are symmetric polynomials in theαi,
we find thatσai = ai for all i, and sog(X) ∈ F [X]. It is monic, andg(α) = 0, and
sof(X)|g(X) (see the definition of the minimum polynomial p14). But alsog(X)|f(X),
because eachαi is a root off(X) (if αi = σα, then applyingσ to the equationf(α) = 0
givesf(αi) = 0). We conclude thatf(X) = g(X), and sof(X) splits into distinct factors
in E.

(c) =⇒ (a). BecauseE has finite degree overF , it is generated overF by a finite
number of elements, say,E = F [α1, ..., αm], αi ∈ E, αi algebraic overF . Let fi be the
minimum polynomial ofαi overF . BecauseE is normal overF , eachfi splits inE, and
soE is the splitting field off =

∏
fi. BecauseE is separable overF , f is separable.

REMARK 3.11. LetE be Galois overF with Galois groupG, and letα ∈ E. The elements
α1 = α, α2, ..., αm of the orbit ofα are called theconjugatesof α. In the course of the
proof of (b) =⇒ (c) of the above theorem we showed that the minimum polynomial ofα
is
∏

(X − αi).

COROLLARY 3.12. Every finite separable extensionE of F is contained in a finite Galois
extension.

PROOF. Let E = F [α1, ..., αm]. Let fi be the minimum polynomial ofαi overF , and take
E ′ to be the splitting field of

∏
fi overF .

COROLLARY 3.13. LetE ⊃M ⊃ F ; if E is Galois overF , then it is Galois overM.

PROOF. We knowE is the splitting field of somef ∈ F [X]; it is also the splitting field of
f regarded as an element ofM [X].
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REMARK 3.14. When we drop the assumption thatE is separable overF , we can still say
something. LetE be a finite extension ofF . An elementα ∈ E is said to beseparable
overF if its minimum polynomial overF is separable. The elements ofE separable over
F form a subfieldE ′ of E that is separable overF ; write [E : F ]sep = [E ′ : F ] (separable
degreeof E overF ). If Ω is an algebraically closed field containingF , then the number of
F -homomorphismsE → Ω is [E : F ]sep. WhenE ⊃M ⊃ F (finite extensions),

[E : F ]sep = [E : M ]sep[M : F ]sep.

In particular,

E is separable overF ⇐⇒ E is separable overM andM is separable overF.

For proofs, see Jacobson 1964, I 10.

DEFINITION 3.15. A finite extensionE ⊃ F is called acyclic, abelian, ..., solvable
extension if it is Galois with cyclic, abelian, ..., solvable Galois group.

The fundamental theorem of Galois theory

THEOREM 3.16 (FUNDAMENTAL THEOREM OF GALOIS THEORY). Let E be a Galois
extension ofF , and letG = Gal(E/F ). The mapsH 7→ EH and M 7→ Gal(E/M)
are inverse bijections between the set of subgroups ofG and the set of intermediate fields
betweenE andF :

{subgroups ofG} ↔ {intermediate fieldsF ⊂M ⊂ E}.

Moreover,
(a) the correspondence is inclusion-reversing:H1 ⊃ H2 ⇐⇒ EH1 ⊂ EH2 ;
(b) indexes equal degrees:(H1 : H2) = [EH2 : EH1 ];
(c) σHσ−1 ↔ σM , i.e.,EσHσ−1

= σ(EH); Gal(E/σM) = σ Gal(E/M)σ−1.
(d) H is normal inG ⇐⇒ EH is normal (hence Galois) overF , in which case

Gal(EH/F ) = G/H.

PROOF. For the first statement, we have to show thatH 7→ EH andM 7→ Gal(E/M) are
inverse maps.

Let H be a subgroup ofG. ThenE is Galois overEH by (3.13), which means that
Gal(E/EH) = H.

Let M be an intermediate field. ThenE is Galois overM by (3.13), which means that
EGal(E/M) = M .

(a) We have the obvious implications:

H1 ⊃ H2 =⇒ EH1 ⊂ EH2 =⇒ Gal(E/EH1) ⊃ Gal(E/EH2).

But Gal(E/EHi) = Hi.
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(b) The fieldE is Galois overEH1 , hence the splitting field of a separable polynomial
(3.10), and so (3.2) shows that[E : EH1 ] = Gal(E/EH1). This proves (b) in the case
H2 = 1, and the general case follows, using that

(H1 : 1) = (H1 : H2)(H2 : 1) and [E : EH1 ] = [E : EH2 ][EH2 : EH1 ].

(c) Forτ ∈ G andα ∈ E, τα = α ⇐⇒ στσ−1(σα) = σα. Therefore,Gal(E/σM) =
σ Gal(E/M)σ−1 , and soσ Gal(E/M)σ−1 ↔ σM.

(d) Let H be a normal subgroup ofG, and letM = EH . BecauseσHσ−1 = H for all
σ ∈ G, we must haveσM = M for all σ ∈ G, i.e., the action ofG onE stabilizesM . We
therefore have a homomorphism

σ 7→ σ|M : G→ Aut(M/F )

whose kernel isH. Let G′ be the image. ThenF = MG′
, and soM is Galois overF

(by Theorem 3.10). Thus,F = MGal(M/F ), and the first part of the theorem applied to the
M/F implies thatGal(M/F ) = G′.

Conversely, assume thatM is normal overF , and writeM = F [α1, ..., αm]. Forσ ∈ G,
σαi is a root of the minimum polynomial ofαi overF , and so lies inM . HenceσM = M ,
and this implies thatσHσ−1 = H (by (c)).

REMARK 3.17. The theorem shows that there is an order reversing bijection between the
intermediate fields ofE/F and the subgroups ofG. Using this we can read off more results.

(a) LetM1, M2, . . . ,Mr be intermediate fields, and letHi be the subgroup correspond-
ing toMi (i.e.,Hi = Gal(E/Mi)). Then (by definition)M1M2 · · ·Mr is the smallest field
containing allMi; hence it must correspond to the largest subgroup contained in allHi,
which is

⋂
Hi. Therefore

Gal(E/M1 · · ·Mr) = H1 ∩ ... ∩Hr.

(b) LetH be a subgroup ofG and letM = EH . The largest normal subgroup contained
in H is N = ∩σ∈GσHσ−1 (see GT 4.10), and soEN , which is the composite of the fields
σM , is the smallest normal extension ofF containingM . It is called thenormal, orGalois,
closure ofM in E.

PROPOSITION3.18. LetE andL be field extensions ofF contained in some common field.
If E/F is Galois, thenEL/L andE/E ∩ L are Galois, and the map

σ 7→ σ|E : Gal(EL/L)→ Gal(E/E ∩ L)

is an isomorphism.

EL

�� @@
=

E L

@@
=

��

E ∩ L

F

PROOF: BecauseE is Galois overF , it is the splitting field of a
separable polynomialf ∈ F [X]. ThenEL is the splitting field off
overL, andE is the splitting field off overE ∩ L. HenceEL/L and
E/E ∩ L are Galois.

Any automorphismσ of EL fixing the elements ofL maps roots of
f to roots off , and soσE = E. There is therefore a homomorphism

σ 7→ σ|E : Gal(EL/L)→ Gal(E/F ).
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If σ ∈ Gal(EL/L) fixes the elements ofE, then it fixes the elements
of EL, and hence is1. Thus,σ 7→ σ|E is injective.

If α ∈ E is fixed by allσ ∈ Gal(EL/L), thenα ∈ L∩E. By the fundamental theorem,
this implies that the image ofσ 7→ σ|E is Gal(E/E ∩ L). �

COROLLARY 3.19. Suppose, in the proposition, thatL is finite overF . Then

[EL : F ] =
[E : F ][L : F ]

[E ∩ L : F ]
.

PROOF. According to 1.20,

[EL : F ] = [EL : L][L : F ],

but

[EL : L]
3.18
= [E : E ∩ L]

1.20
=

[E : F ]

[E ∩ L : F ]
.

PROPOSITION3.20. Let E1 and E2 be field extensions ofF contained in some common
field. If E1 andE2 are Galois overF , thenE1E2 andE1 ∩ E2 are Galois overF , and

σ 7→ (σ|E1, σ|E2) : Gal(E1E2/F )→ Gal(E1/F )×Gal(E2/F )

is an isomorphism ofGal(E1E2/F ) onto the subgroup

H = {(σ1, σ2) | σ1|E1 ∩ E2 = σ2|E1 ∩ E2}

of Gal(E1/F )×Gal(E2/F ).

E1E2

�� @@

E1 E2

@@ ��

E1 ∩ E2

F

PROOF: Let a ∈ E1 ∩ E2, and letf be its minimum polynomial
overF . Thenf hasdeg f distinct roots inE1 anddeg f distinct roots
in E2. Sincef can have at mostdeg f roots inE1E2, it follows that it
hasdeg f distinct roots inE1∩E2. This shows thatE1∩E2 is normal
and separable overF , and hence Galois (3.10).

As E1 andE2 are Galois overF , they are splitting fields of sep-
arable polynomialsf1, f2 ∈ F [X]. Now E1E2 is a splitting field for
f1f2, and hence it also is Galois overF .

The mapσ 7→ (σ|E1, σ|E2) is clearly an injective homomorphism,
and its image is contained inH. We prove that the image is the whole
of H by counting.

From the fundamental theorem,

Gal(E2/F )/ Gal(E2/E1 ∩ E2) ∼= Gal(E1 ∩ E2/F ),

and so, for eachσ ∈ Gal(E1/F ), σ|E1 ∩ E2 has exactly[E2 : E1 ∩ E2] extensions to an
element ofGal(E2/F ). Therefore,

(H : 1) = [E1 : F ][E2 : E1 ∩ E2] =
[E1 : F ] · [E2 : F ]

[E1 ∩ E2 : F ]
,

which equals[E1E2 : F ] by (3.19). �
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Examples

EXAMPLE 3.21. We analyse the extensionQ[ζ]/Q, whereζ is a primitive7th root of1, say
ζ = e2πi/7.

Q[ζ]

�
�

�〈σ3〉 @
@

@
〈σ2〉

Q[ζ + ζ] Q[
√
−7]

@
@

@〈σ〉/〈σ3〉 �
�

�
〈σ〉/〈σ2〉

Q

Note thatQ[ζ] is the splitting field of the polynomial
X7 − 1, and thatζ has minimum polynomial

X6 + X5 + X4 + X3 + X2 + X + 1

(see 1.41). Therefore,Q[ζ] is Galois of degree6 overQ. For
anyσ ∈ G, σζ = ζ i, somei, 1 ≤ i ≤ 6, and the mapσ 7→ i
defines an isomorphismGal(Q[ζ]/Q) → (Z/7Z)×. Let σ
be the element ofGal(Q[ζ]/Q) such thatσζ = ζ3. Thenσ
generatesGal(Q[ζ]/Q) because the class of3 in (Z/7Z)×

generates it (the powers of3 mod7 are3, 2, 6, 4, 5, 1). We investigate the subfields ofQ[ζ]
corresponding to the subgroups〈σ3〉 and〈σ2〉.

Note thatσ3ζ = ζ6 = ζ (complex conjugate ofζ). The subfield ofQ[ζ] corresponding
to 〈σ3〉 is Q[ζ + ζ], andζ + ζ = 2 cos 2π

7
. Since〈σ3〉 is a normal subgroup of〈σ〉, Q[ζ + ζ]

is Galois overQ, with Galois group〈σ〉/〈σ3〉. The conjugates ofα1 =df ζ + ζ areα3 =
ζ3 + ζ−3, α2 = ζ2 + ζ−2. Direct calculation shows that

α1 + α2 + α3 =
∑6

i=1ζ
i = −1,

α1α2 + α1α3 + α2α3 = −2,

α1α2α3 = (ζ + ζ6)(ζ2 + ζ5)(ζ3 + ζ4)

= (ζ + ζ3 + ζ4 + ζ6)(ζ3 + ζ4)

= (ζ4 + ζ6 + 1 + ζ2 + ζ5 + 1 + ζ + ζ3)

= 1.

Hence the minimum polynomial10 of ζ + ζ is

g(X) = X3 + X2 − 2X − 1.

The minimum polynomial ofcos 2π
7

= α1

2
is therefore

g(2X)

8
= X3 + X2/2−X/2− 1/8.

The subfield ofQ[ζ] corresponding to〈σ2〉 is generated byβ = ζ + ζ2 + ζ4. Let
β′ = σβ. Then(β − β′)2 = −7. Hence the field fixed by〈σ2〉 is Q[

√
−7].

EXAMPLE 3.22. We compute the Galois group of a splitting fieldE of X5 − 2 ∈ Q[X].

10More directly, on settingX = ζ + ζ in

(X3 − 3X) + (X2 − 2) + X + 1

one obtains1 + ζ + ζ2 + · · ·+ ζ6 = 0.
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Q[ζ, α]

�
�

�N @
@

@
H

Q[ζ] Q[α]

@
@

@G/N �
�

�

Q

Recall from Exercise 7 thatE = Q[ζ, α] whereζ is a primi-
tive5th root of1, andα is a root ofX5−2. For example, we could
takeE to be the splitting field ofX5 − 2 in C, with ζ = e2πi/5

andα equal to the real5th root of2. We have the picture at right.
The degrees

[Q[ζ] : Q] = 4, [Q[α] : Q] = 5.

Because4 and5 are relatively prime,

[Q[ζ, α] : Q] = 20.

HenceG = Gal(Q[ζ, α]/Q) has order20, and the subgroupsN andH corresponding to
Q[ζ] andQ[α] have orders5 and4 respectively. BecauseQ[ζ] is normal overQ (it is the
splitting field of X5 − 1), N is normal inG. BecauseQ[ζ] · Q[α] = Q[ζ, α], we have
H ∩ N = 1, and soG = N oθ H. Moreover,H ∼= G/N ∼= (Z/5Z)×, which is cyclic,
being generated by the class of2. Let τ be the generator ofH corresponding to2 under this
isomorphism, and letσ be a generator ofN . Thusσ(α) is another root ofX5 − 2, which
we can take to beζα (after possibly replacingσ by a power). Hence:{

τζ = ζ2

τα = α

{
σζ = ζ
σα = ζα.

Note thatτστ−1(α) = τσα = τ(ζα) = ζ2α and it fixesζ; thereforeτστ−1 = σ2. ThusG
has generatorsσ andτ and defining relations

σ5 = 1, τ 4 = 1, τστ−1 = σ2.

The subgroupH has five conjugates, which correspond to the five fieldsQ[ζ iα],

σiHσ−i ↔ σiQ[α] = Q[ζ iα], 1 ≤ i ≤ 5.

Constructible numbers revisited

Earlier, we showed (1.36) that a numberα is constructible if and only if it is contained in a
field Q[

√
a1] · · · [

√
ar]. In particular

α constructible =⇒ [Q[α] : Q] = 2s somes.

Now we can prove a partial converse to this last statement.

THEOREM 3.23. If α is contained in a Galois extension ofQ of degree2r, then it is con-
structible.

PROOF. Supposeα ∈ E whereE is Galois overQ of degree2r, and letG = Gal(E/Q).
From a theorem on the structure ofp-groups (GT 6.7), we know there will be a sequence
of groups

{1} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gr = G
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with Gi/Gi−1 of order2. Correspondingly, there will be a sequence of fields,

E = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Er = Q

with Ei−1 of degree2 overEi.
But the next lemma shows that every quadratic extension is obtained by extracting a

square root, and we know (1.35) that square roots can be constructed using only a ruler and
compass. This proves the theorem.

LEMMA 3.24. Let E/F be a quadratic extension of fields of characteristic6= 2. Then
E = F [

√
d] for somed ∈ F .

PROOF. Let α ∈ E, α /∈ F , and letX2 + bX + c be the minimum polynomial ofα. Then
α = −b±

√
b2−4c

2
, and soE = F [

√
b2 − 4c].

COROLLARY 3.25. If p is a prime of the form2k + 1, thencos 2π
p

is constructible.

PROOF. The fieldQ[e2πi/p] is Galois overQ with Galois groupG ∼= (Z/pZ)×, which has
orderp− 1 = 2k.

Thus a regularp-gon, p prime, is constructible if and only ifp is a Fermat prime,
i.e., of the form22r

+ 1. For example, we have proved that the regular65537-polygon is
constructible, without (happily) having to exhibit an explicit formula forcos 2π

65537
.

The Galois group of a polynomial

If the polynomialf ∈ F [X] is separable, then its splitting fieldFf is Galois overF , and
we callGal(Ff/F ) theGalois groupGf of f.

Let f =
∏n

i=1(X − αi) in a splitting fieldFf . We know elements ofGal(Ff/F )
map roots off to roots off , i.e., they map the set{α1, α2, . . . , αn} into itself. Being
automorphisms, they define permutations of{α1, α2, . . . , αn}. As Ff = F [α1, ..., αn], an
element ofGal(Ff/F ) is uniquely determined by its action on{α1, α2, . . . , αn}. ThusGf

can be identified with a subset ofSym({α1, α2, . . . , αn}) ≈ Sn. In fact,Gf consists of the
permutationsσ of {α1, α2, . . . , αn} such that, forP ∈ F [X1, . . . , Xn],

P (α1, . . . , αn) = 0 =⇒ P (σα1, . . . , σαn) = 0.

This gives a description ofGf without mentioning fields or abstract groups (neither of
which were available to Galois).

Note that this shows that(Gf : 1), hence[Ff : F ], dividesdeg(f)!.

Solvability of equations

For a polynomialf ∈ F [X], we say thatf(X) = 0 is solvable in radicalsif its solu-
tions can be obtained by the algebraic operations of addition, subtraction, multiplication,
division, and the extraction ofmth roots, or, more precisely,if there exists a tower of fields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm

such that
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(a) Fi = Fi−1[αi], αmi
i ∈ Fi−1;

(b) Fm contains a splitting field forf.

THEOREM 3.26 (GALOIS, 1832). Let F be a field of characteristic zero. The equation
f = 0 is solvable in radicals if and only if the Galois group off is solvable.

We shall prove this later (5.29). Also we shall exhibit polynomialsf(X) ∈ Q[X] with
Galois groupSn, which are therefore not solvable whenn ≥ 5 by GT 4.29.

REMARK 3.27. IfF has characteristicp, then the theorem fails for two reasons:
(a) f may not be separable, and so not have a Galois group;
(b) Xp −X − a = 0 is not solvable by radicals.

If the definition of solvable is changed to allow extensions of the type in (b) in the chain,
andf is required to be separable then the theorem becomes true in characteristicp.

Exercises 11–13

11*. Let F be a field of characteristic0. Show thatF (X2)∩F (X2−X) = F (intersection
insideF (X)). [Hint: Find automorphismsσ andτ of F (X), each of order2, fixing F (X2)
andF (X2 −X) respectively, and show thatστ has infinite order.]

12*.11 Let p be an odd prime, and letζ be a primitivepth root of 1 in C. Let E = Q[ζ],
and letG = Gal(E/Q); thusG = (Z/(p))×. Let H be the subgroup of index2 in G. Put
α =

∑
i∈H ζ i andβ =

∑
i∈G\H ζ i. Show:

(a) α andβ are fixed byH;
(b) if σ ∈ G \H, thenσα = β, σβ = α.

Thusα andβ are roots of the polynomialX2 + X + αβ ∈ Q[X]. Computeαβ and show
that the fixed field ofH is Q[

√
p] whenp ≡ 1 mod 4 andQ[

√
−p] whenp ≡ 3 mod 4.

13*. Let M = Q[
√

2,
√

3] andE = M [
√

(
√

2 + 2)(
√

3 + 3)] (subfields ofR).
(a) Show thatM is Galois overQ with Galois group the4-groupC2 × C2.
(b) Show thatE is Galois overQ with Galois group the quaternion group.

11This problem shows that every quadratic extension ofQ is contained in a cyclotomic extension ofQ. The
Kronecker-Weber theorem says that everyabelianextension ofQ is contained in a cyclotomic extension.
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4 Computing Galois groups.

In this section, we investigate general methods for computing Galois groups.

When isGf ⊂ An?

Consider a polynomial
f(X) = Xn + a1X

n−1 + · · ·+ an

and letf(X) =
∏n

i=1(X − αi) in some splitting field. Set

∆(f) =
∏

1≤i<j≤n

(αi − αj), D(f) = ∆(f)2 =
∏

1≤i<j≤n

(αi − αj)
2.

The discriminant of f is defined to beD(f). Note thatD(f) is nonzero if and only if
f has only simple roots, i.e., iff is separable with no multiple factors. LetGf be the
Galois group off , and identify it with a subgroup ofSym({α1, . . . , αn}) (as on p38). The
choice of a numbering for the roots determines an isomorphismSym({α1, . . . , αn}) ∼= Sn,
and the subgroup ofSym({α1, . . . , αn}) corresponding to any normal subgroup ofSn is
independent of the choice.

PROPOSITION4.1. Assumef is separable, and letσ ∈ Gf .
(a) σ∆(f) = sign(σ)∆(f), wheresign(σ) is the signature ofσ.
(b) σD(f) = D(f).

PROOF. The first equation follows immediately from the definition of the signature ofσ
(see GT§4), and the second equation is obtained by squaring the first.

COROLLARY 4.2. Letf(X) ∈ F [X] be of degreen and have only simple roots. LetFf be
a splitting field forf , so thatGf = Gal(Ff/F ).

(a) The discriminantD(f) ∈ F .
(b) The subfield ofFf corresponding toAn ∩Gf is F [∆(f)]. Hence

Gf ⊂ An ⇐⇒ ∆(f) ∈ F ⇐⇒ D(f) is a square inF.

PROOF. (a) The discriminant off is an element ofFf fixed byGf =df Gal(Ff/F ), and
hence lies inF (by the fundamental theorem of Galois theory).

(b) Becausef has simple roots,∆(f) 6= 0, and so the formulaσ∆(f) = sign(σ)∆(f)
shows that an element ofGf fixes∆(f) if and only if it lies inAn. Thus, under the Galois
correspondence,

Gf ∩ An ↔ F [∆(f)].

Hence,
Gf ∩ An = Gf ⇐⇒ F [∆(f)] = F.
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The discriminant off can be expressed as a universal polynomial in the coefficients of
f . For example:

D(aX2 + bX + c) = (b2 − 4ac)/a2

D(X3 + bX + c) = −4b3 − 27c2.

By completing the cube, one can put any cubic polynomial in this form (in characteristic
6= 3).

The formulas for the discriminant rapidly become very complicated, for example, that
for X5 + aX4 + bX3 + cX2 + dX + e has59 terms. Fortunately, Maple knows them: the
syntax is “discrim(f,X); ” wheref is a polynomial in the variableX.

REMARK 4.3. SupposeF ⊂ R. ThenD(f) will not be a square if it is negative. It is
known that the sign ofD(f) is (−1)s where2s is the number of nonreal roots off in C
(see ANT 2.39). Thus ifs is odd, thenGf is not contained inAn. This can be proved more
directly by noting that complex conjugation acts on the roots as the product ofs disjoint
transpositions.

Of course the converse is not true: whens is even,Gf is not necessarily contained in
An.

When isGf transitive?

PROPOSITION4.4. Let f(X) ∈ F [X] have only simple roots. Thenf(X) is irreducible if
and only ifGf permutes the roots off transitively.

PROOF. =⇒ : If α andβ are two roots off(X) in a splitting fieldFf for f , then they
both havef(X) as their minimum polynomial, and so there is an obviousF -isomorphism
F [α]→ F [β], namely,

F [α] ∼= F [X]/(f(X)) ∼= F [β], α↔ X ↔ β.

Write Ff = F [α1, α2, ...] with α1 = α andα2, α3, . . . the other roots off(X). Then the
F -homomorphismα 7→ β : F [α] → Ff extends (step by step) to anF -homomorphism
Ff → Ff (use 2.2b), which is anF -isomorphism sendingα to β.
⇐= : Let g(X) ∈ F [X] be an irreducible factor off , and letα be one of its roots. Ifβ

is a second root off , then (by assumption)β = σα for someσ ∈ Gf . Now, becauseg has
coefficients inF ,

g(σα) = σg(α) = 0,

and soβ is also a root ofg. Therefore, every root off is also a root ofg, and sof(X) =
g(X).

Note that whenf(X) is irreducible of degreen, n|(Gf : 1) because[F [α] : F ] = n
and[F [α] : F ] divides[Ff : F ] = (Gf : 1). ThusGf is a transitive subgroup ofSn whose
order is divisible byn.
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Polynomials of degree≤ 3

EXAMPLE 4.5. Letf(X) ∈ F [X] be a polynomial of degree2. Thenf is inseparable
⇐⇒ F has characteristic2 andf(X) = X2 − a for somea ∈ F r F 2. If f is separable,
thenGf = 1(= A2) or S2 according asD(f) is a square inF or not.

EXAMPLE 4.6. Letf(X) ∈ F [X] be a polynomial of degree3. We can assumef to be
irreducible, for otherwise we are essentially back in the previous case. Thenf is insepara-
ble if and only ifF has characteristic3 andf(X) = X3 − a for somea ∈ F \ F 3. If f is
separable, thenGf is a transitive subgroup ofS3 whose order is divisible by3. There are
only two possibilities:Gf = A3 or S3 according asD(f) is a square inF or not. Note that
A3 is generated by the cycle(123).

For example,X3 − 3X + 1 ∈ Q[X] is irreducible (see 1.12), its discriminant is
−4(−3)3 − 27 = 81 = 92, and so its Galois group isA3.

On the other hand,X3 + 3X + 1 ∈ Q[X] is also irreducible (apply 1.11), but its
discriminant is−135 which is not a square inQ, and so its Galois group isS3.

Quartic polynomials

Let f(X) be a quartic polynomial without multiple roots. In order to determineGf we
shall exploit the fact thatS4 has

V = {1, (12)(34), (13)(24), (14)(23)}

as a normal subgroup — it is normal because it contains all elements of type2 + 2 (GT
4.28). LetE be a splitting field off , and letf(X) =

∏
(X − αi) in E. We identify

the Galois groupGf of f with a subgroup of the symmetric groupSym({α1, α2, α3, α4}).
Consider the partially symmetric elements

α = α1α2 + α3α4

β = α1α3 + α2α4

γ = α1α4 + α2α3.

They are distinct because theαi are distinct; for example,

α− β = α1(α2 − α3) + α4(α3 − α2) = (α1 − α4)(α2 − α3).

The groupSym({α1, α2, α3, α4}) permutes{α, β, γ} transitively. The stabilizer of each of
α, β, γ must therefore be a subgroup of index3 in S4, and hence has order8. For example,
the stabilizer ofβ is 〈(1234), (13)〉. Groups of order8 in S4 are Sylow2-subgroups. There
are three of them, all isomorphic toD4. By the Sylow theorems,V is contained in a Sylow
2-subgroup; in fact, because the Sylow2-subgroups are conjugate andV is normal, it is
contained in all three. It follows thatV is the intersection of the three Sylow2-subgroups.
Each Sylow2-subgroup fixes exactly one ofα, β, or γ, and therefore their intersectionV
is the subgroup ofSym({α1, α2, α3, α4}) fixing α, β, andγ.

LEMMA 4.7. The fixed field ofGf ∩ V is F [α, β, γ]. HenceF [α, β, γ] is Galois overF
with Galois groupGf/Gf ∩ V .
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PROOF. The above discussion shows that the subgroup ofGf of elements fixingF [α, β, γ]
is Gf ∩ V , and soEGf∩V = F [α, β, γ] by the fundamental theorem of Galois theory. The
remaining statements follow from the fundamental theorem using thatV is normal.

E

F [α, β, γ]

Gf∩V

F

Gf /Gf∩V

Let M = F [α, β, γ], and letg(X) = (X −α)(X −β)(X − γ) ∈M [X] —
it is called theresolvent cubicof f . Any permutation of theαi (a fortiori, any
element ofGf ) merely permutesα, β, γ, and so fixesg(X). Therefore (by the
fundamental theorem)g(X) has coefficients inF . More explicitly, we have:

LEMMA 4.8. The resolvent cubic off = X4 + bX3 + cX2 + dX + e is

g = X3 − cX2 + (bd− 4e)X − b2e + 4ce− d2.

The discriminants off andg are equal.

PROOF (SKETCH). Expandf = (X − α1)(X − α2)(X − α3)(X − α4) to
expressb, c, d, e in terms ofα1, α2, α3, α4. Expandg = (X−α)(X−β)(X−γ) to express
the coefficients ofg in terms ofα1, α2, α3, α4, and substitute to express them in terms of
b, c, d, e.

Now letf be an irreducible separable quartic. ThenG = Gf is a transitive subgroup of
S4 whose order is divisible by4. There are the following possibilities forG:

G (G ∩ V : 1) (G : V ∩G)
S4 4 6
A4 4 3
V 4 1
D4 4 2
C4 2 2

(G ∩ V : 1) = [E : M ]
(G : V ∩G) = [M : F ]

The groups of typeD4 are the Sylow2-subgroups discussed above, and the groups of type
C4 are those generated by cycles of length4.

We can compute(G : V ∩ G) from the resolvent cubicg, becauseG/V ∩ G =
Gal(M/F ) andM is the splitting field ofg. Once we know(G : V ∩ G), we can de-
duceG except in the case that it is2. If [M : F ] = 2, thenG∩ V = V or C2. Only the first
group acts transitively on the roots off , and so (from 4.4) we see that in this caseG = D4

or C4 according asf is irreducible or not inM [X].

EXAMPLE 4.9. Considerf(X) = X4 + 4X2 + 2 ∈ Q[X]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is(X − 4)(X2 − 8); thusM = Q[

√
2]. From the

table we see thatGf is of typeD4 or C4, but f factors overM (even as a polynomial in
X2), and henceGf is of typeC4.

EXAMPLE 4.10. Considerf(X) = X4 − 10X2 + 4 ∈ Q[X]. It is irreducible inQ[X]
because (by inspection) it is irreducible inZ[X]. Its resolvent cubic is(X + 10)(X +
4)(X − 4), and soGf is of typeV .
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EXAMPLE 4.11. Considerf(X) = X4 − 2 ∈ Q[X]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic isg(X) = X3 + 8X. HenceM = Q[i

√
2]. One

can check thatf is irreducible overM , andGf is of typeD4.
Alternatively, analyse the equation as in (3.22).
As we explained in (1.29), Maple knows how to factor polynomials with coefficients in

Q[α].

Examples of polynomials withSp as Galois group overQ
The next lemma gives a criterion for a subgroup ofSp to be the whole ofSp.

LEMMA 4.12. For p prime, the symmetric groupSp is generated by any transposition and
anyp-cycle.

PROOF. After renumbering, we may assume that the transposition isτ = (12), and we may
write thep-cycleσ so that1 occurs in the first position,σ = (1 i2 · · · ip). Now some power
of σ will map 1 to 2 and will still be ap-cycle (here is where we use thatp is prime). After
replacingσ with the power, we may supposeσ = (1 2 j3 . . . jp), and after renumbering
again, we may supposeσ = (1 2 3 . . . p). Then we’ll have(12), (2 3), (3 4), (4 5), . . . in the
group generated byσ andτ , and these elements generateSp.

PROPOSITION4.13. Let f be an irreducible polynomial of prime degreep in Q[X]. If f
splits inC and has exactly two nonreal roots, thenGf = Sp.

PROOF. Let E be the splitting field off in C, and letα ∈ E be a root off . Becausef is
irreducible,[Q[α] : Q] = deg f = p, and sop|[E : Q] = (Gf : 1). ThereforeGf contains
an element of orderp (Cauchy’s theorem, GT 4.13), but the only elements of orderp in Sp

arep-cycles (here we use thatp is prime again).
Let σ be complex conjugation onC. Thenσ transposes the two nonreal roots off(X)

and fixes the rest. ThereforeGf ⊂ Sp contains a transposition and ap-cycle, and so is the
whole ofSp.

It remains to construct polynomials satisfying the conditions of the Proposition.

EXAMPLE 4.14. Letp≥ 5 be a prime number. Choose a positive even integerm and even
integers

n1 < n2 < · · · < np−2.

Let f(X) = g(X)− 2, where

g(X) = (X2 + m)(X − n1)...(X − np−2).

When we writef(X) = Xp + a1X
p−1 + · · · + ap, then allai are even, andap =

−(m
∏

ni) − 2 is not divisible by 4. Hence Eisenstein’s criterion implies thatf(X) is
irreducible.

The polynomialg(X) certainly has exactly two nonreal roots. Its graph crosses thex-
axis exactlyp− 2 times, and its maxima and minima all have absolute value> 2 (because
its values at odd integers have absolute value> 2). Hence the graph off(X) = g(X)− 2
also crosses thex-axis exactlyp− 2 times, and the proposition applies tof .
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Finite fields

Let Fp = Z/pZ, the field ofp elements. As we noted in§1, any other fieldE of character-
istic p contains a copy ofFp, namely,{m1E | m ∈ Z}. No harm results if we identifyFp

with this subfield ofE.
Let E be a field of degreen overFp. ThenE hasq = pn elements, and soE× is a group

of orderq − 1. Hence the nonzero elements ofE are rootsXq−1 − 1, and all elements of
E (including0) are roots ofXq −X. HenceE is a splitting field forXq −X, and so any
two fields withq elements are isomorphic.

PROPOSITION4.15. Every extension of finite fields is simple.

PROOF. ConsiderE ⊃ F . ThenE× is a finite subgroup of the multiplicative group of a
field, and hence is cyclic (see Exercise 3). Ifζ generatesE× as a multiplicative group, then
certainlyE = F [ζ].

Now let E be the splitting field off(X) = Xq −X, q = pn. The derivativef ′(X) =
−1, which is relatively prime tof(X) (in fact, to every polynomial), and sof(X) has
q distinct roots inE. Let S be the set of its roots. ThenS is obviously closed under
multiplication and the formation of inverses, but it is also closed under subtraction: if
aq − a = 0 andbq − b = 0, then

(a− b)q = aq − bq = a− b.

HenceS is a field, and soS = E. In particular,E haspn elements.

PROPOSITION 4.16. For each powerq = pn there is a fieldFq with q elements. It is
the splitting field ofXq − X, and hence any two such fields are isomorphic. Moreover,
Fq is Galois overFp with cyclic Galois group generated by the Frobenius automorphism
σ(a) = ap.

PROOF. Only the final statement remains to be proved. The fieldFq is Galois overFp

because it is the splitting field of a separable polynomial. We noted in (1.4) thatx
σ7→ xp

is an automorphism ofFq. An elementa of Fq is fixed byσ if and only if ap = a, but Fp

consists exactly of such elements, and so the fixed field of〈σ〉 is Fp. This proves thatFq is
Galois overFp and that〈σ〉 = Gal(Fq/Fp) (see 3.9).

COROLLARY 4.17. LetE be a field withpn elements. For each divisorm of n, m ≥ 0, E
contains exactly one field withpm elements.

PROOF. We know thatE is Galois overFp and thatGal(E/Fp) is the cyclic group of order
n generated byσ. The group〈σ〉 has one subgroup of ordern/m for eachm dividing n,
namely,〈σm〉, and soE has exactly one subfield of degreem overFp for eachm dividing
n, namely,E〈σm〉. Because it has degreem overFp, E〈σm〉 haspm elements.

COROLLARY 4.18. Each monic irreducible polynomialf of degreed|n in Fp[X] occurs
exactly once as a factor ofXpn −X; hence, the degree of the splitting field off is≤ d.
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PROOF. First, the factors ofXpn − X are distinct because it has no common factor with
its derivative. Iff(X) is irreducible of degreed, thenf(X) has a root in a field of degree
d over Fp. But the splitting field ofXpn − X contains a copy of every field of degree
d over Fp with d|n. Hence some root ofXpn − X is also a root off(X), and therefore
f(X)|Xpn − X. In particular,f dividesXpd − X, and therefore it splits in its splitting
field, which has degreed overFp.

PROPOSITION4.19. LetF be an algebraic closure ofFp. ThenF contains exactly one field
Fpn for each integern ≥ 1, andFpn consists of the roots ofXpn −X. Moreover,

Fpm ⊂ Fpn ⇐⇒ m|n.

The partially ordered set of finite subfields ofF is isomorphic to the set of integersn ≥ 1
partially ordered by divisibility.

PROOF. Obvious from what we have proved.

PROPOSITION4.20. The fieldFp has an algebraic closureF.

PROOF. Choose a sequence of integers1 = n1 < n2 < n3 < . . . such thatni|ni+1 for all
i, for example,2 < 2× 3 < 2× 3× 5 < . . .. Define the fieldsFpni inductively as follows:
Fpn1 = Fp; Fpni+1 is the splitting field ofXpni+1 − X over Fpni . Then,Fpn1 ⊂ Fpn2 ⊂
Fpn3 ⊂ · · · , and we defineF = ∪Fpni . As a union of fields algebraic overFp, it is again
a field algebraic overFp. Moreover, every polynomial inFp[X] splits inF, and so it is an
algebraic closure ofF (by 1.44).

REMARK 4.21. Since theFpn ’s are not subsets of a fixed set, forming the union requires
explanation: defineS to be the disjoint union of theFpn; for a, b ∈ S, seta ∼ b if a = b in
one of theFpn; then∼ is an equivalence relation, and we letF = S/ ∼.

Maple factors polynomials modulop very quickly. The syntax is “Factor(f(X))
mod p; ”. Thus, for example, to obtain a list of all monic polynomials of degree1, 2, or 4
overF5, ask Maple to factorX625 −X.

Finite fields were sometimes called12 Galois fields,andFq used to be denotedGF (q)
(it still is in Maple). Maple contains a “Galois field package” to do computations in finite
fields. For example, it can find a primitive element forFq (i.e., a generator forF×q ). To start
it, type: readlib(GF): .

Computing Galois groups overQ
In the remainder of this section, I sketch a practical method for computing Galois groups
over Q and similar fields. Recall that for a monic separable polynomialf ∈ F [X], Ff

12From a letter to the Notices of the AMS, February 2003 (Pálfy): “full credit should be given to [Galois]
for constructing finite fields in general. In one of the few papers published during his short lifetime, entitled
“Sur la th́eorie des nombres”, which appeared in the Bulletin des Sciences Mathématiques in June 1830,
Galois — at that time not even nineteen years old — defined finite fields of arbitrary prime power order and
established their basic properties, e.g. the existence of a primitive element. So it is fully justified when finite
fields are called Galois fields and customarily denoted byGF (q).”
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denotes a splitting field forF , andGf = Gal(Ff/F ) denotes the Galois group ofF .
Moreover,Gf permutes the rootsα1, α2, . . . of f in Ff :

G ⊂ Sym{α1, α2, . . .}.

The first result generalizes Proposition 4.4.

PROPOSITION4.22. Letf(X) be a monic polynomial inF [X] with only simple roots, and
suppose that the orbits ofGf acting on the roots off havem1, . . . ,mr elements respec-
tively. Thenf factors asf = f1 · · · fr with fi irreducible of degreemi.

PROOF. Let α1, . . . , αm, m = deg f , be the roots off(X) in Ff . The monic factors of
f(X) in Ff [X] correspond to subsetsS of {α1, . . . , αm},

S ↔ fS =
∏
α∈S

(X − α),

andfS is fixed under the action ofGf (and hence has coefficients inF ) if and only if S
is stable underGf . Therefore the irreducible factors off in F [X] are the polynomialsfS

corresponding to minimal subsetsS of {α1, . . . , αm} stable underGf , but these subsetsS
are precisely the orbits ofGf in {α1, . . . , αm}.

REMARK 4.23. Note that the proof shows the following: let{α1, . . . , αm} =
⋃

Oi be the
decomposition of{α1, . . . , αm} into a disjoint union of orbits for the groupGf ; then

f =
∏

fi, fi =
∏

αi∈Oi
(X − αi)

is the decomposition off into a product of irreducible polynomials inF [X].
Now supposeF is finite, with pn elements say. ThenGf is a cyclic group generated

by the Frobenius automorphismσ : x 7→ xp. When we regardσ as a permutation of the
roots off , then distinct orbits ofσ correspond to the factors in its cycle decomposition (GT
4.22). Hence, if the degrees of the distinct irreducible factors off arem1, m2, . . . ,mr, then
σ has a cycle decomposition of type

m1 + · · ·+ mr = deg f.

LEMMA 4.24. Let R be a unique factorization domain with field of fractionsF , and letf
be a monic polynomial inR[X]. LetP be a prime ideal inR, and letf be the image off
in (R/P )[X]. Assume that neitherf nor f has a multiple root. Then the rootsα1, . . . , αm

of f lie in some finite extensionR′ of R, and their reductionsαi moduloPR′ are the roots
of f . MoreoverGf ⊂ Gf when both are identified with subgroups ofSym{α1, . . . , αm} =
Sym{α1, . . . , αm}.

PROOF. Omitted — see van der Waerden, Modern Algebra, I,§61 (second edition) or ANT
3.43.

On combining these results, we obtain the following theorem.
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THEOREM 4.25 (DEDEKIND). Letf(X) ∈ Z[X] be a monic polynomial of degreem, and
let p be a prime such thatf mod p has simple roots (equivalently,D(f) is not divisible
byp). Suppose thatf =

∏
fi with fi irreducible of degreemi in Fp[X]. ThenGf contains

an element whose cycle decomposition is of type

m = m1 + · · ·+ mr = m.

EXAMPLE 4.26. ConsiderX5−X−1. Modulo2, this factors as(X2+X+1)(X3+X2+1),
and modulo3 it is irreducible. HenceGf contains(ik)(lmn) and (12345), and so also
((ik)(lmn))3 = (ik). ThereforeGf = S5 by (4.12).

LEMMA 4.27. A transitive subgroup ofH ⊂ Sn containing a transposition and an(n−1)-
cycle is equal toSn.

PROOF. After possibly renumbering, we may suppose the(n − 1)-cycle is (123 . . . n −
1). Because of the transitivity, the transposition can be transformed into(in), some1 ≤
i ≤ n − 1. Conjugating(in) by (123 . . . n − 1) and its powers will transform it into
(1n), (2n), . . . , (n− 1 n), and these elements obviously generateSn.

EXAMPLE 4.28. Select monic polynomials of degreen, f1, f2, f3 with coefficients inZ
such that:

(a) f1 is irreducible modulo2;
(b) f2 = (degree1)(irreducible of degreen− 1) mod 3;
(c) f3 = (irreducible of degree2)(product of1 or 2 irreducible polys of odd degree) mod

5.
We also choosef1, f2, f3 to have only simple roots. Take

f = −15f1 + 10f2 + 6f3.

Then
(i) Gf is transitive (it contains ann-cycle becausef ≡ f1 mod2);

(ii) Gf contains a cycle of lengthn− 1 (becausef ≡ f2 mod3);
(iii) Gf contains a transposition (becausef ≡ f3 mod 5, and so it contains the prod-

uct of a transposition with a commuting element of odd order; on raising this to an
appropriate odd power, we are left with the transposition). HenceGf is Sn.

The above results give the following strategy for computing the Galois group of an
irreducible polynomialf ∈ Q[X]. Factorf modulo a sequence of primesp not dividing
D(f) to determine the cycle types of the elements inGf — a difficult theorem in number
theory, the effective Chebotarev density theorem, says that if a cycle type occurs inGf ,
then this will be seen by looking modulo a set of prime numbers of positive density, and
will occur for a prime less than some bound. Now look up a table of transitive subgroups
of Sn with order divisible byn and their cycle types. If this doesn’t suffice to determine the
group, then look at its action on the set of subsets ofr roots for somer.

See, Butler and McKay,The transitive groups of degree up to eleven, Comm. Alge-
bra 11 (1983), 863–911. This lists all transitive subgroups ofSn, n ≤ 11, and gives the
cycle types of their elements and the orbit lengths of the subgroup acting on ther-sets of
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roots. With few exceptions, these invariants are sufficient to determine the subgroup up to
isomorphism.

Maple V can compute Galois groups for polynomials of degree≤ 7 overQ. To learn
the syntax, type “?galois; ”.

See also, Soicher and McKay,Computing Galois groups over the rationals, J. Number
Theory, 20 (1985) 273–281.

Exercises 14–20

14*. Find the splitting field ofXm − 1 ∈ Fp[X].

15*. Find the Galois group ofX4 − 2X3 − 8X − 3 overQ.

16*. Find the degree of the splitting field ofX8 − 2 overQ.

17*. Give an example of a field extensionE/F of degree4 such that there does not exist a
field M with F ⊂M ⊂ E, [M : F ] = 2.

18. List all irreducible polynomials of degree3 over F7 in 10 seconds or less (there are
112).

19. “It is a thought-provoking question that few graduate students would know how to
approach the question of determining the Galois group of, say,

X6 + 2X5 + 3X4 + 4X3 + 5X2 + 6X + 7.”

[overQ].
(a) Can you find it?
(b) Can you find it without using the “galois” command in Maple?

20*. Let f(X) = X5 + aX + b, a, b ∈ Q. Show thatGf ≈ D5 (dihedral group) if and only
if

(a) f(X) is irreducible inQ[X], and
(b) the discriminantD(f) = 44a5 + 55b4 of f(X) is a square, and
(c) the equationf(X) = 0 is solvable by radicals.

Additional exercise: Show that a polynomialf of degreen =
∏k

i=1 pri
i is irreducible

overFq if and only if gcd(f(x), xqn/pi − x) = 1 for all i.
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5 Applications of Galois theory

In this section, we apply the fundamental theorem of Galois theory to obtain other results
about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fieldsE/F is simple ifE = F [α] for some elementα of
E. Such anα is called aprimitive elementof E. We shall show that (at least) all separable
extensions have primitive elements.

Consider for exampleQ[
√

2,
√

3]/Q. We know (see Exercise 13) that its Galois group
overQ is a4-group〈σ, τ〉, where{

σ
√

2 = −
√

2

σ
√

3 =
√

3
,

{
τ
√

2 =
√

2

τ
√

3 = −
√

3.

Note that
σ(
√

2 +
√

3) = −
√

2 +
√

3,

τ(
√

2 +
√

3) =
√

2−
√

3,

(στ)(
√

2 +
√

3) = −
√

2−
√

3.

These all differ from
√

2 +
√

3, and so only the identity element ofGal(Q[
√

2,
√

3]/Q)
fixes the elements ofQ[

√
2+
√

3]. According to the fundamental theorem, this implies that√
2 +
√

3 is a primitive element:

Q[
√

2,
√

3] = Q[
√

2 +
√

3].

It is clear that this argument should work much more generally.
We say that an elementα algebraic over a fieldF is separableoverF if its minimum

polynomial overF has no multiple roots.

THEOREM5.1. LetE = F [α1, ..., αr] be a finite extension ofF , and assume thatα2, ..., αr

are separable overF (but not necessarilyα1). Then there is an elementγ ∈ E such that
E = F [γ].

PROOF. For finite fields, we proved this in (4.15). Hence we may assumeF to be infinite.
It suffices to prove the statement forr = 2. Thus letE = F [α, β] with β separable overF .
Let f andg be the minimum polynomials ofα andβ overF . Let α1 = α, . . . , αs be the
roots off in some big field containingE, and letβ1 = β, β2, . . . , βt be the roots ofg. For
j 6= 1, βj 6= β1, and so the the equation

αi + Xβj = α1 + Xβ1,

has exactly one solution, namely,X = αi−α1

β1−βj
. If we choose ac ∈ F different from any of

these solutions (using thatF is infinite), then

αi + cβj 6= α + cβ unlessi = 1 = j.
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Let γ = α + cβ. Then the polynomialsg(X) and f(γ − cX) have coefficients in
F [γ][X], and haveβ as a root:

g(β) = 0, f(γ − cβ) = f(α) = 0.

In fact, β is their only common root, because we chosec so thatγ − cβj 6= αi unless
i = 1 = j. Therefore

gcd(g(X), f(γ − cX)) = X − β.

Here we have computed thegcd in some field splittingfg, but we have seen (Proposition
2.10) that thegcd of two polynomials has coefficients in the same field as the coefficients
of the polynomials. Henceβ ∈ F [γ], and this implies thatα = γ − cβ also lies inF [γ].
We have shown thatF [α, β] = F [γ].

REMARK 5.2. AssumeF to be infinite. The proof shows thatγ can be chosen to be of the
form

γ = α1 + c2α2 + · · ·+ crαr, ci ∈ F.

If E is Galois overF , then an element of this form will be a primitive element provided
it is moved by every element ofGal(E/F ) except1. These remarks make it very easy to
write down primitive elements.

Our hypotheses are minimal: iftwoof theα’s are not separable, then the extension need
not be simple. Before giving an example to demonstrate, we need another result.

PROPOSITION5.3. Let E = F [γ] be a simple algebraic extension ofF . Then there are
only finitely many intermediate fieldsM ,

F ⊂M ⊂ E.

PROOF. Let M be such a field, and letg(X) be the minimum polynomial ofγ overM . Let
M ′ be the subfield ofE generated overF by the coefficients ofg(X). ClearlyM ′ ⊂ M ,
but (equally clearly)g(X) is the minimum polynomial ofγ overM ′. Hence

[E : M ′] = deg g = [E : M ],

and soM = M ′ — M is generated by the coefficients ofg(X).
Let f(X) be the minimum polynomial ofγ overF . Theng(X) dividesf(X) in M [X],

and hence also inE[X]. Therefore, there are only finitely many possibleg’s, and conse-
quently only finitely many possibleM ’s.

REMARK 5.4. (a) Note that the proof in fact gives a description of all the intermediate
fields: each is generated overF by the coefficients of a factorg(X) of f(X) in E[X]. The
coefficients of such ag(X) are partially symmetric polynomials in the roots off(X) (that
is, fixed by some, but not necessarily all, of the permutations of the roots).

(b) The proposition has a converse: ifE is a finite extension ofF and there are only
finitely many intermediate fieldsM , F ⊂ M ⊂ E, thenE is a simple extension ofF
(see Dummit and Foote 1991, p508). This gives another proof of Theorem 5.1 in the case
thatE is separable overF , because Galois theory shows that there are only finitely many
intermediate fields in this case (the Galois closure ofE over F has only finitely many
intermediate fields).
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EXAMPLE 5.5. The simplest nonsimple algebraic extension isk(X, Y ) ⊃ k(Xp, Y p),
wherek is an algebraically closed field of characteristicp. Let F = k(Xp, Y p). For
anyc ∈ k, we have

k(X,Y ) = F [X,Y ] ⊃ F [X + cY ] ⊃ F

with the degree of each extension equal top. If

F [X + cY ] = F [X + c′Y ], c 6= c′,

thenF [X + cY ] would contain bothX andY , which is impossible because[k(X, Y ) :
F ] = p2. Hence there are infinitely many distinct intermediate fields.13

Fundamental Theorem of Algebra

We finally prove the misnamed14 fundamental theorem of algebra.

THEOREM 5.6. The fieldC of complex numbers is algebraically closed.

PROOF. DefineC to be the splitting field ofX2 + 1 ∈ R[X], and leti be a root ofX2 + 1
in C; thusC = R[i]. We have to show (see 1.44) that everyf(X) ∈ R[X] has a root inC.

The two facts we need to assume aboutR are:
– Positive real numbers have square roots.
– Every polynomial of odd degree with real coefficients has a real root.

Both are immediate consequences of the Intermediate Value Theorem, which says that
a continuous function on a closed interval takes every value between its maximum and
minimum values (inclusive). (Intuitively, this says that, unlike the rationals, the real line
has no “holes”.)

We first show that every element ofC has a square root. Writeα = a+bi, with a, b ∈ R,
and choosec, d to be real numbers such that

c2 =
(a +

√
a2 + b2)

2
, d2 =

(−a +
√

a2 + b2)

2
.

Thenc2 − d2 = a and(2cd)2 = b2. If we choose the signs ofc andd so thatcd has the
same sign asb, then(c + di)2 = α and

√
α = c + di.

Let f(X) ∈ R[X], and letE be a splitting field forf(X)(X2 + 1) — we have to show
that E = C. SinceR has characteristic zero, the polynomial is separable, and soE is
Galois overR. Let G be its Galois group, and letH be a Sylow2-subgroup ofG.

13Zariski showed that there is even an intermediate fieldM that is not isomorphic toF (X, Y ), and Piotr
Blass showed in his thesis (University of Michigan 1977), using the methods of algebraic geometry, that there
is an infinite sequence of intermediate fields, no two of which are isomorphic.

14Because it is not strictly a theorem in algebra: it is a statement aboutR whose construction is part of
analysis (or maybe topology). In fact, I prefer the proof based on Liouville’s theorem in complex analysis to
the more algebraic proof given in the text: iff(z) is a polynomial without a root inC, thenf(z)−1 will be
bounded and holomorphic on the whole complex plane, and hence (by Liouville) constant. The Fundamental
Theorem was quite a difficult theorem to prove. Gauss gave a proof in his doctoral dissertation in 1798 in
which he used some geometric arguments which he didn’t justify. He gave the first rigorous proof in 1816.
The elegant argument given here is a simplification by Emil Artin of earlier proofs.
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Let M = EH . ThenM is of odd degree overR, andM = R[α] someα (Theorem 5.1).
The minimum polynomial ofα overR has odd degree, and so has a root inR. It therefore
has degree1, and soM = R andG = H.

We now have thatGal(E/C) is a 2-group. If it is6= 1, then it has a subgroupN of
index 2 (GT 4.15). The fieldEN has degree2 over C, and can therefore be obtained by
extracting the square root of an element ofC (see 3.24), but we have seen that all such
elements already lie inC. HenceEN = C, which is a contradiction. ThusE = C.

COROLLARY 5.7. (a) The fieldC is the algebraic closure ofR.
(b) The set of all algebraic numbers is an algebraic closure ofQ.

PROOF. Part (a) is obvious from the definition of “algebraic closure” (1.43), and (b) fol-
lows from Corollary 1.46.

Cyclotomic extensions

A primitive nth root of 1 in F is an element of ordern in F×. Such an element can exist
only if F has characteristic0 or characteristicp not dividingn.

PROPOSITION5.8. Let F be a field of characteristic0 or characteristicp not dividingn.
LetE be the splitting field ofXn − 1.

(a) There exists a primitiventh root of1 in E.
(b) If ζ is a primitiventh root of1 in E, thenE = F [ζ].
(c) The fieldE is Galois overF ; for eachσ ∈ Gal(E/F ), there is ani ∈ (Z/nZ)× such

thatσζ = ζ i for all ζ with ζn = 1; the mapσ 7→ [i] is an injective homomorphism

Gal(E/F )→ (Z/nZ)×.

PROOF. (a) The roots ofXn − 1 are distinct, because its derivativenXn−1 has only zero
as a root (here we use the condition on the characteristic), and soE containsn distinctnth

roots of1. Thenth roots of1 form a finite subgroup ofE×, and so (see Exercise 3) they
form a cyclic group. Any generator will have ordern, and hence will be a primitiventh root
of 1.

(b) The roots ofXn − 1 are the powers ofζ, andF [ζ] contains them all.
(c) If ζ0 is one primitiventh root of 1, then the remaining primitiventh roots of1 are

the elementsζ i
0 with i relatively prime ton. Since, for any automorphismσ of E, σζ0 is

again a primitiventh root of 1, it equalsζ i
0 for somei relatively prime ton, and the map

σ 7→ i mod n is injective becauseζ0 generatesE overF . It obviously is a homomorphism.
Moreover, for any othernth root of1, ζ = ζm

0 ,

σζ = (σζ0)
m = ζ im

0 = ζ i.

The mapσ 7→ [i] : Gal(F [ζ]/F ) → (Z/nZ)× need not be surjective. For example, if
F = C, then its image is{1}, and ifF = R, it is either{[1]} or {[−1], [1]}. On the other
hand, whenn = p is prime, we saw in (1.41) that[Q[ζ] : Q] = p − 1, and so the map is
surjective. We now prove that the map is surjective for alln whenF = Q.
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The polynomialXn − 1 has some obvious factors inQ[X], namely, the polynomials
Xd − 1 for anyd|n. The quotient ofXn − 1 by all these factors ford < n is called thenth

cyclotomic polynomialΦn. Thus

Φn =
∏

(X − ζ) (product over the primitiventh roots of1).

It has degreeϕ(n), the order of(Z/nZ)×. Since everynth root of 1 is a primitivedth root
of 1 for exactly oned dividing n, we see that

Xn − 1 =
∏
d|n

Φd(X).

For example,Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 + X + 1, and

Φ6(X) =
X6 − 1

(X − 1)(X + 1)(X2 + X + 1)
= X2 −X + 1.

This gives an easy inductive method of computing the cyclotomic polynomials. Alterna-
tively ask Maple by typing:

with(numtheory);
cyclotomic(n,X); .
BecauseXn − 1 has coefficients inZ and is monic, every monic factor of it inQ[X]

has coefficients inZ (1.14). In particular, the cyclotomic polynomials lie inZ[X].

LEMMA 5.9. LetF be a field of characteristic0 or p not dividingn, and letζ be a primitive
nth root of1 in some extension field. The following are equivalent:

(a) thenth cyclotomic polynomialΦn is irreducible;
(b) the degree[F [ζ] : F ] = ϕ(n);
(c) the homomorphism

Gal(F [ζ]/F )→ (Z/nZ)×

is an isomorphism.

PROOF. Becauseζ is a root ofΦn, the minimum polynomial ofζ dividesΦn. It is equal to
it if and only if [F [ζ] : F ] = ϕ(n), which is true if and only if the injectionGal(F [ζ]/F ) ↪→
(Z/nZ)× is onto.

THEOREM 5.10. Thenth cyclotomic polynomialΦn is irreducible inQ[X].

PROOF. Let f(X) be a monic irreducible factor ofΦn in Q[X]. Its roots will be primitive
nth roots of1, and we have to show they includeall primitive nth roots of1. For this it
suffices to show that

ζ a root off(X) =⇒ ζ i a root off(X) for all i such thatgcd(i, n) = 1.

Such ani is a product of primes not dividingn, and so it suffices to show that

ζ a root off(X) =⇒ ζp a root off(X) for all primesp - n.
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Write
Φn(X) = f(X)g(X).

Proposition 1.14 shows thatf(X) andg(X) lie in Z[X]. Supposeζ is a root off , but
that for some primep not dividing n, ζp is not a root off . Thenζp is a root ofg(X),
g(ζp) = 0, and soζ is a root ofg(Xp). Asf(X) andg(Xp) have a common root, they have
a nontrivial common factor inQ[X] (2.10), which automatically lies inZ[X] (1.14). Write
h(X) 7→ h(X) for the mapZ[X] 7→ Fp[X], and note that

gcdZ[X](f(X), g(Xp)) 6= 1 =⇒ gcdFp[X](f(X), g(Xp)) 6= 1.

But g(Xp) = g(X)p (use the mod p binomial theorem and thatap = a for all a ∈ Fp),
and sof(X) andg(X) have a common factor. HenceXn−1, when regarded as an element
of Fp[X], has multiple roots, but we saw in the proof of Proposition 5.8 that it doesn’t.
Contradiction.

REMARK 5.11. This proof is very old — in essence it goes back to Dedekind in 1857 —
but its general scheme has recently become popular: take a statement in characteristic zero,
reduce modulop (where the statement may no longer be true), and exploit the existence of
the Frobenius automorphisma 7→ ap to obtain a proof of the original statement. For ex-
ample, commutative algebraists use this method to prove results about commutative rings,
and there are theorems about complex manifolds that haveonly been proved by reducing
things to characteristicp.

There are some beautiful and mysterious relations between what happens in character-
istic 0 and in characteristicp. For example, letf(X1, ..., Xn) ∈ Z[X1, ..., Xn]. We can

(a) look at the solutions off = 0 in C, and so get a topological space;
(b) reduce modp, and look at the solutions off = 0 in Fpn.

The Weil conjectures (Weil 1949; proved in part by Grothendieck in the 1960’s and com-
pletely by Deligne in 1973) assert that the Betti numbers of the space in (a) control the
cardinalities of the sets in (b).

THEOREM 5.12. The regularn-gon is constructible if and only ifn = 2kp1 · · · ps where
thepi are distinct Fermat primes.

PROOF. The regularn-gon is constructible if and only ifcos 2π
n

(or ζ = e2πi/n) is con-
structible. We know thatQ[ζ] is Galois overQ, and so (according to 1.37 and 3.23)ζ is
constructible if and only if[Q[ζ] : Q] is a power of2. But (see GT 3.10)

ϕ(n) =
∏
p|n

(p− 1)pn(p)−1, n =
∏

pn(p),

and this is a power of2 if and only if n has the required form.

REMARK 5.13. The final section of Gauss’s,Disquisitiones Arithmeticae(1801) is titled
“Equations defining sections of a Circle”. In it Gauss proves that thenth roots of1 form a
cyclic group, thatXn−1 is solvable (this was before the theory of abelian groups had been
developed, and before Galois), and that the regularn-gon is constructible whenn is as in
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the Theorem. He also claimed to have proved the converse statement15. This leads some
people to credit him with the above proof of the irreducibility ofΦn, but in the absence of
further evidence, I’m sticking with Dedekind.

Independence of characters

THEOREM 5.14 (DEDEKIND’ S THM ON THE INDEPENDENCE OF CHARACTERS). Let F
be a field, and letG be a group (monoid will do). Then any finite set{χ1, . . . , χm} of
homomorphismsG→ F× is linearly independent overF , i.e.,∑

aiχi = 0 (as a functionG→ F ) =⇒ a1 = 0, . . . , am = 0.

PROOF. Induction onm. Form = 1, it’s obvious. Assume it form− 1, and suppose that,
for some set{χ1, . . . , χm} of homomorphismsG→ F× andai ∈ F ,

a1χ1(x) + a2χ2(x) + · · ·+ amχm(x) = 0 for all x ∈ G.

We have to show that theai are zero. Asχ1 andχ2 are distinct, they will take distinct
values on someg ∈ G. On replacingx with gx in the equation, we find that

a1χ1(g)χ1(x) + a2χ2(g)χ2(x) + · · ·+ amχm(g)χm(x) = 0 for all x ∈ G.

On multiplying the first equation byχ1(g) and subtracting it from the second, we obtain
the equation

a′2χ2 + · · ·+ a′mχm = 0, a′i = ai(χi(g)− χ1(g)).

The induction hypothesis now shows thata′i = 0 for all i ≥ 2. Sinceχ2(g) − χ1(g) 6= 0,
we must havea2 = 0, and the induction hypothesis shows that all the remainingai’s are
also zero.

COROLLARY 5.15. Let F1 andF2 be fields, and letσ1, ..., σm be distinct homomorphisms
F1 → F2. Thenσ1, ..., σm are linearly independent overF2.

PROOF. Apply the theorem toχi = σi|F×
1 .

COROLLARY 5.16. LetE be a finite separable extension ofF of degreem. Letα1, . . . , αm

be a basis forE overF , and letσ1, . . . , σm be distinctF -homomorphisms fromE into a
fieldΩ. Then the matrix whose(i, j)th-entry isσiαj is invertible.

PROOF. If not, there existci ∈ Ω such that
∑m

i=1ciσi(αj) = 0 for all j. But
∑m

i=1ciσi : E →
Ω is F -linear, and so this implies that

∑m
i=1ciσi(α) = 0 for all α ∈ E, which contradicts

Corollary 5.15.

15“Whenevern − 1 involves prime factors other than2, we are always led to equations of higher de-
gree....WE CAN SHOW WITH ALL RIGOR THAT THESE HIGHER-DEGREE EQUATIONS CANNOT
BE AVOIDED IN ANY WAY NOR CAN THEY BE REDUCED TO LOWER-DEGREE EQUATIONS. The
limits of the present work exclude this demonstration here, but we issue this warning lest anyone attempt to
achieve geometric constructions for sections other than the ones suggested by our theory (e.g. sections into
7, 9, 11, 13, 19, etc. parts) and so spend his time uselessly.” Ibid.§365.
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The normal basis theorem

DEFINITION 5.17. LetE be a finite Galois extension ofF with Galois groupG. A normal
basisfor E is anF -basis of the form{σα | σ ∈ G}, i.e., anF -basis consisting of the
conjugates of an elementα of E.

THEOREM5.18 (NORMAL BASIS THEOREM). Every Galois extension has a normal basis.

PROOF. Let E/F be a Galois extension with Galois groupG. We give two proofs, the
first of which assumes thatF is infinite and the second thatG is cyclic. Since every Galois
extension of a finite field is cyclic (4.16), this covers all cases.

Assume thatF is infinite. This has the consequence that, iff ∈ F [X1, . . . , Xm] has
the property thatf(a1, . . . , am) = 0 for all a1, . . . , am ∈ F , thenf(X1, . . . , Xm) = 0. We
prove this by induction onm. Form = 1 it follows from the fact that a nonzero polynomial
in one variable has only finitely many roots. Form > 1, write

f =
∑

ci(X1, . . . , Xm−1)X
i
m.

For anym− 1-tuple,a1, . . . , am−1,

f(a1, . . . , am−1, Xm)

is a polynomial inXm having every element ofF as a root. Therefore, each of its coeffi-
cients is zero:ci(a1, . . . , am−1) = 0 for all i. Since this holds for all(a1, . . . , am−1), the
induction hypothesis shows thatci(X1, . . . , Xm−1) is zero.

Now number the elements ofG asσ1, . . . , σm (with σ1 = 1).
Let f(X1, . . . , Xm) ∈ F [X1, . . . , Xm] have the property that

f(σ1α, . . . , σmα) = 0

for all α ∈ E. For a basisα1, . . . , αm of E overF , let

g(Y1, . . . , Ym) = f(
∑m

i=1Yiσ1αi,
∑m

i=1Yiσ2αi, . . .).

The hypothesis onf implies thatg(a1, . . . , am) = 0 for all ai ∈ F , and sog = 0. But the
matrix (σiαj) is invertible (5.16). Sinceg is obtained fromf by an invertible linear change
of variables,f can be obtained fromg by the inverse linear change of variables. Therefore
it also is zero.

Write Xi = X(σi), and letA = (X(σiσj)), i.e.,A is them ×m matrix havingXk in
the(i, j)th place ifσiσj = σk. Thendet(A) is a polynomial inX1, . . . , Xm, say,det(A) =
f(X1, . . . , Xm). Clearly,f(1, 0, . . . , 0) is the determinant of a matrix having exactly one1
in each row and each column and its remaining entries0. Hence the rows of the matrix are
a permutation of the rows of the identity matrix, and so its determinant is±1. In particular,
f is not identically zero, and so there exists anα ∈ E× such thatf(σ1α, . . . , σmα) (=
det(σiσjα)) is nonzero. We shall show that{σiα} is a normal basis. For this, it suffices to
show thatσiα are linearly independent overF . Suppose∑m

j=1ajσjα = 0
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for someaj ∈ F . On applyingσ1, . . . , σm successively, we obtain a system ofm-equations∑
ajσiσjα = 0

in them “unknowns”aj. Because this system of equations is nonsingular, theaj ’s are zero.
This completes the proof of the lemma in the case thatF is infinite.

Now assume thatG is cyclic generated, say, by an elementσ0 of ordern. Then[E :
F ] = n. The minimum polynomial ofσ0 regarded as an endomorphism of theF -vector
spaceE is the monic polynomial inF [X] of least degree such thatP (σ0) = 0 (as an
endomorphism ofE). It has the property that it divides every polynomialQ(X) ∈ F [X]
such thatQ(σ0) = 0. Sinceσn

0 = 1, P (X) dividesXn − 1. On the other hand, Dedekind’s
theorem on the independence of characters (5.14) implies thatid, σ0, . . . , σ

n−1
0 are linearly

independent overF , and sodeg P (X) > n − 1. We conclude thatP (X) = Xn − 1.
Therefore, as anF [X]-module withX acting asσ0, E is isomorphic toF [X]/(Xn − 1).
For any generatorα of E as aF [X]-module,α, σ0α, . . . , σ0α

n−1 is aF -basis forE.

Hilbert’s Theorem 90.

Let G be a finite group. AG-moduleis an abelian groupM together with an action ofG,
i.e., a mapG×M →M such that

(a) σ(m + m′) = σm + σm′ for all σ ∈ G, m, m′ ∈M ;
(b) (στ)(m) = σ(τm) for all σ, τ ∈ G, m ∈M ;
(c) 1m = m for all m ∈M .

Thus, to give an action ofG onM is the same as to give a homomorphismG → Aut(M)
(automorphisms ofM as an abelian group).

EXAMPLE 5.19. LetE be a Galois extension ofF , with Galois groupG. Then(E, +) and
(E×, ·) areG-modules.

Let M be aG-module. Acrossed homomorphismis a mapf : G→M such that

f(στ) = f(σ) + σf(τ) for all σ, τ ∈ G.

Note that the condition implies thatf(1) = f(1 · 1) = f(1) + f(1), and sof(1) = 0.

EXAMPLE 5.20. (a) Letf : G→M be a crossed homomorphism. For anyσ ∈ G,

f(σ2) = f(σ) + σf(σ),

f(σ3) = f(σ · σ2) = f(σ) + σf(σ) + σ2f(σ)

. . . = . . .

f(σn) = f(σ) + σf(σ) + · · ·+ σn−1f(σ).

Thus, if G is a cyclic group of ordern generated byσ, then a crossed homomorphism
f : G→M is determined by its value,x say, onσ, andx satisfies the equation

x + σx + · · ·+ σn−1x = 0, (*)
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Conversely, ifx ∈ M satisfies (*), then the formulasf(σi) = x + σx + · · · + σi−1x
define a crossed homomorphismf : G → M . Thus, for a finite groupG = 〈σ〉, there is a
one-to-one correspondence

{crossed homsf : G→M} f↔f(σ)←→ {x ∈M satisfying (*)}.

(b) For anyx ∈M , we obtain a crossed homomorphism by putting

f(σ) = σx− x, all σ ∈ G.

Such a crossed homomorphism is called aprincipal crossed homomorphism.
(c) If G acts trivially onM , i.e.,σm = m for all σ ∈ G andm ∈ M , then a crossed

homomorphism is simply a homomorphism, and there are no nonzero principal crossed
homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed homomor-
phism, and the sum and difference of two principal crossed homomorphisms is again prin-
cipal. Thus we can define

H1(G, M) =
{crossed homomorphisms}

{principal crossed homomorphisms}

(quotient abelian group). The cohomology groupsHn(G, M) have been defined for all
n ∈ N, but since this was not done until the twentieth century, it will not be discussed in
this course.

EXAMPLE 5.21. Letπ : X̃ → X be the universal covering space of a topological spaceX,
and letΓ be the group of covering transformations. Under some fairly general hypotheses,
a Γ-moduleM will define a sheafM on X, andH1(X,M) ∼= H1(Γ, M). For example,
whenM = Z with the trivial action ofΓ, this becomes the isomorphismH1(X, Z) ∼=
H1(Γ, Z) = Hom(Γ, Z).

THEOREM 5.22. Let E be a Galois extension ofF with groupG; thenH1(G, E×) = 0,
i.e., every crossed homomorphismG→ E× is principal.

PROOF. Let f be a crossed homomorphismG → E×. In multiplicative notation, this
means,

f(στ) = f(σ) · σ(f(τ)), σ, τ ∈ G,

and we have to find aγ ∈ E× such thatf(σ) = σγ
γ

for all σ ∈ G. Because thef(τ) are
nonzero, Corollary 5.15 implies that∑

τ∈Gf(τ)τ : E → E

is not the zero map, i.e., there exists anα ∈ E such that

β
df
=
∑

τ∈Gf(τ)τα 6= 0.
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But then, forσ ∈ G,

σβ =
∑

τ∈Gσ(f(τ)) · στ(α)

=
∑

τ∈Gf(σ)−1 f(στ) · στ(α)

= f(σ)−1
∑

τ∈Gf(στ)στ(α),

which equalsf(σ)−1β because, asτ runs overG, so also doesστ . Therefore,f(σ) = β
σ(β)

and we can takeβ = γ−1.

Let E be a Galois extension ofF with Galois groupG. We define thenorm of an
elementα ∈ E to be

Nm α =
∏

σ∈Gσα.

For τ ∈ G,
τ(Nm α) =

∏
σ∈Gτσα = Nm α,

and soNm α ∈ F . The map
α 7→ Nm α : E× → F×

is a obviously a homomorphism.

EXAMPLE 5.23. The norm mapC× → R× is α 7→ |α|2 and the norm mapQ[
√

d]× → Q×

is a + b
√

d 7→ a2 − db2.
We are interested in determining the kernel of the norm map. Clearly ifα is of the form

β
τβ

, thenNm(α) = 1. Our next result show that, for cyclic extensions, all elements with
norm1 are of this form.

COROLLARY 5.24 (HILBERT’ S THEOREM 90). 16Let E be a finite cyclic extension ofF
with Galois group〈σ〉; if NmE/F α = 1, thenα = β/σβ for someβ ∈ E.

PROOF. Let m = [E : F ]. The condition onα is thatα · σα · · ·σm−1α = 1, and so (5.20a)
there is a crossed homomorphismf : 〈σ〉 → E× with f(σ) = α. Theorem 5.22 now shows
thatf is principal, which means that there is aβ with f(σ) = β/σβ.

Cyclic extensions.

We are now able to classify the cyclic extensions of degreen of a fieldF in the case thatF
containsn nth roots of1.

THEOREM 5.25. LetF be a field containing a primitiventh root of1.
(a) The Galois group ofXn − a is cyclic of order dividingn.
(b) Conversely, ifE is cyclic of degreen overF , then there is an elementβ ∈ E such

thatE = F [β] andβn ∈ F ; henceE is the splitting field ofXn − βn.

16This is Satz 90 in Hilbert’s book, Theorie der Algebraischen Zahlkörper, 1897. The theorem was discov-
ered by Kummer in the special case ofQ[ζp]/Q, and generalized to Theorem 5.22 by E. Noether. Theorem
5.22, as well as various vast generalizations of it, are also referred to as Hilbert’s Theorem 90.

For an illuminating discussion of Hilbert’s book, see the introduction to the English translation (Springer
1998) written by F. Lemmermeyer and N. Schappacher.



5 APPLICATIONS OF GALOIS THEORY 61

PROOF. (a) If α is one root ofXn− a, then the other roots are the elements of the formζα
with ζ ann th root of1. Hence the splitting field ofXn − a is F [α]. The mapσ 7→ σα

α
is an

injective homomorphism fromGal(F [α]/F ) into the cyclic group〈ζ〉.
(b) Let ζ be a primitiventh root of 1 inF , and letσ generateGal(E/F ). ThenNm ζ =

ζn = 1, and so, according to Hilbert’s Theorem 90, there is an elementβ ∈ E such that
σβ = ζβ. Thenσiβ = ζ iβ, and so only the identity element ofGal(E/F ) fixesβ — we
conclude by the fundamental theorem of Galois theory thatE = F [β]. On the other hand
σβn = ζnβn = βn, and soβn ∈ F.

REMARK 5.26. (a) AssumeF contains a primitiventh root of1. Then, two cyclic extension
F [a

1
n ] andF [b

1
n ] of F are isomorphic if and only ifa andb generate the same subgroup of

F×/F×n.
(b) The polynomialXn−a, n ≥ 2, is irreducible inF [X] under the following condition:

a is not apth power for anyp dividing n, and, if4|n, thena /∈ −4F 4. See Lang, Algebra,
Addison-Wesley, 1965, VIII,§9, Theorem 16.

(c) If F has characteristicp (hence has nopth roots of1 other than1), thenXp−X − a
is irreducible inF [X] unlessa = bp − b for someb ∈ F , and when it is irreducible, its
Galois group is cyclic of orderp (generated byα 7→ α + 1 whereα is a root). Moreover,
every extension ofF which is cyclic of degreep is the splitting field of such a polynomial.

REMARK 5.27 (KUMMER THEORY). Theorem 5.25 and Remark 5.26a classify the cyclic
extensions ofF ordern in the case thatF contains a primitiventh root of1. Under the same
assumption onF , it is possible to extend this to a classification of the Galois extensions of
F with abelian Galois group of exponentn (i.e., with Galois group a quotient of(Z/nZ)r

for somer).
Let E be such an extension ofF , and let

S(E) = {a ∈ F× | a becomes annth power inE}.

ThenS(E) is a subgroup ofF× containingF×n, and the mapE 7→ S(E) defines a one-
to-one correspondence between the abelian extensions ofE of exponentn and the groups
S(E),

F× ⊃ S(E) ⊃ F×n,

such that(S(E) : F×n) < ∞. The fieldE is recovered fromS(E) as the splitting field
of
∏

(Xn − a) (product over a set of representatives forS(E)/F×n). Moreover, there is a
perfect pairing

(a, σ) 7→ σa

a
:

S(E)

F×n
×Gal(E/F )→ µn (group ofnth roots of1).

In particular,[E : F ] = (S(E) : F×n). (Cf. Exercise 5 for the casen = 2.)

Proof of Galois’s solvability theorem

LEMMA 5.28. Let f ∈ F [X] be separable, and letF ′ be an extension field ofF . Then the
Galois group off as an element ofF ′[X] is a subgroup of that off as an element ofF [X].
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PROOF. Let E ′ be a splitting field forf overF ′, and letα1, . . . , αm be the roots off(X)
in E ′. ThenE = F [α1, ..., αm] is a splitting field off overF . Any element ofGal(E ′/F ′)
permutes theαi and so mapsE into itself. The mapσ 7→ σ|E is an injectionGal(E ′/F ′)→
Gal(E/F ).

THEOREM 5.29. Let F be a field of characteristic0. A polynomial inF [X] is solvable if
and only if its Galois group is solvable.

PROOF. ⇐=: Let f ∈ F [X] have solvable Galois groupGf . Let F ′ = F [ζ] whereζ is a
primitive nth root of 1 for some largen — for example,n = (deg f)! will do. The lemma
shows that the Galois groupG of f as an element ofF ′[X] is a subgroup ofGf , and hence
is also solvable (GT 6.6a). This means that there is a sequence of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gm−1 ⊃ Gm = {1}

such that eachGi is normal inGi−1 andGi−1/Gi is cyclic. LetE be a splitting field of
f(X) overF ′, and letFi = EGi. We have a sequence of fields

F ⊂ F [ζ] = F ′ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = E

with Fi cyclic overFi−1. Theorem 5.25b shows thatFi = Fi−1[αi] with α
[Fi:Fi−1]
i ∈ Fi−1,

eachi, and this shows thatf is solvable.
=⇒: It suffices to show thatGf is a quotient of a solvable group (GT 6.6a). Hence it

suffices to find a solvable extensioñE of F such thatf(X) splits inẼ[X].
We are given that there exists a tower of fields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm

such that
(a) Fi = Fi−1[αi], αri

i ∈ Fi−1;
(b) Fm contains a splitting field forf.

Let n = r1 · · · rm, and letΩ be a field Galois overF and containing (a copy of)Fm and
a primitiventh root ζ of 1. For example, choose a primitive elementγ for Fm/F (see 5.1),
and takeΩ to be a splitting field ofg(X)(Xn− 1) whereg(X) is the minimum polynomial
of γ overF .

Let G be the Galois group ofΩ/F , and letẼ be the Galois closure ofFm[ζ] in Ω.
According to (3.17a),̃E is the composite of the fieldsσFm[ζ], σ ∈ G, and so it is generated
overF by the elements

ζ, α1, α2, . . . , αm, σα1, . . . , σαm, σ′α1, . . . .

We adjoin these elements toF one by one to get a sequence of fields

F ⊂ F [ζ] ⊂ F [ζ, α1] ⊂ · · · ⊂ F ′ ⊂ F ′′ ⊂ · · · ⊂ Ẽ

in which each fieldF ′′ is obtained from its predecessorF ′ by adjoining anrth root of
an element ofF ′ (r = r1, . . . , rm, or n). According to (5.8) and (5.25a), each of these
extensions is cyclic, and sõE/F is a solvable extension.
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The general polynomial of degreen

When we say that the roots of
aX2 + bX + c

are
−b±

√
b2 − 4ac

2a

we are thinking ofa, b, c as variables: for any particular values ofa, b, c, the formula gives
the roots of the particular equation. We shall prove in this section that there is no similar
formula for the roots of the “general polynomial” of degree≥ 5.

We define thegeneral polynomial of degreen to be

f(X) = Xn − t1X
n−1 + · · ·+ (−1)ntn ∈ F [t1, ..., tn][X]

where theti are variables. We shall show that, when we regardf as a polynomial inX with
coefficients in the fieldF (t1, . . . , tn), its Galois group isSn. Then Theorem 5.29 proves
the above remark (at least in characteristic zero).

Symmetric polynomials

Let R be a commutative ring (with1). A polynomialP (X1, ..., Xn) ∈ R[X1, . . . , Xn] is
said to besymmetricif it is unchanged when its variables are permuted, i.e., if

P (Xσ(1), . . . , Xσ(n)) = P (X1, . . . , Xn), all σ ∈ Sn.

For example

p1 =
∑

i Xi = X1 + X2 + · · ·+ Xn,
p2 =

∑
i<j XiXj = X1X2 + X1X3 + · · ·+ X1Xn + X2X3 + · · ·+ Xn−1Xn,

p3 =
∑

i<j<k XiXjXk, = X1X2X3 + · · ·
· · ·

pr =
∑

i1<···<ir
Xi1 ...Xir

· · ·
pn = X1X2 · · ·Xn

are all symmetric becausepr is the sum ofall monomials of degreer made up out of distinct
Xi’s. These particular polynomials are called theelementary symmetric polynomials.

THEOREM 5.30 (SYMMETRIC POLYNOMIALS THEOREM). Every symmetric polynomial
P (X1, ..., Xn) in R[X1, ..., Xn] is equal to a polynomial in the elementary symmetric poly-
nomials with coefficients inR, i.e.,P ∈ R[p1, ..., pn].

PROOF. We define an ordering on the monomials in theXi by requiring that

X i1
1 X i2

2 · · ·X in
n > Xj1

1 Xj2
2 · · ·Xjn

n

if either
i1 + i2 + · · ·+ in > j1 + j2 + · · ·+ jn
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or equality holds and, for somes,

i1 = j1, . . . , is = js, but is+1 > js+1.

For example,
X1X

3
2X3 > X1X

2
2X3 > X1X2X

2
3 .

Let Xk1
1 · · ·Xkn

n be the highest monomial occurring inP with a coefficientc 6= 0. Because
P is symmetric, it contains all monomials obtained fromXk1

1 · · ·Xkn
n by permuting the

X ’s. Hencek1 ≥ k2 ≥ · · · ≥ kn.
The highest monomial inpi is X1 · · ·Xi, and it follows that the highest monomial in

pd1
1 · · · pdn

n is
Xd1+d2+···+dn

1 Xd2+···+dn
2 · · ·Xdn

n . (1)

Therefore the highest monomial ofP (X1, . . . , Xn) − cpk1−k2
1 pk2−k3

2 · · · pkn
n is strictly less

than the highest monomial inP (X1, . . . , Xn). We can repeat this argument with the poly-
nomial on the left, and after a finite number of steps, we will arrive at a representation ofP
as a polynomial inp1, . . . , pn.

Let f(X) = Xn + a1X
n−1 + · · · + an ∈ R[X], and suppose thatf splits over some

ring S containingR:
f(X) =

∏n
i=1(X − αi), αi ∈ S.

Then

a1 = −p1(α1, . . . , αn), a2 = p2(α1, . . . , αn), . . . , an = ±pn(α1, . . . , αn).

Thus theelementarysymmetric polynomials in the roots off(X) lie in R, and so the
theorem implies thateverysymmetric polynomial in the roots off(X) lies in R. For
example, the discriminant

D(f) =
∏
i<j

(αi − αj)
2

of f lies inR.

Symmetric functions

THEOREM5.31 (SYMMETRIC FUNCTIONS THEOREM). WhenSn acts onE = F (X1, ..., Xn)
by permuting theXi’s, the field of invariants isF (p1, ..., pn).

PROOF. Let f ∈ F (X1, . . . , Xn) be symmetric (i.e., fixed bySn). Setf = g/h, g, h ∈
F [X1, . . . , Xn]. The polynomialsH =

∏
σ∈Sn

σh andHf are symmetric, and therefore lie
in F [p1, . . . , pn] (5.30). Hence their quotientf = Hf/H lies inF (p1, . . . , pn).

COROLLARY 5.32. The fieldF (X1, ..., Xn) is Galois overF (p1, ..., pn) with Galois group
Sn (acting by permuting theXi).

PROOF. We have shown thatF (p1, . . . , pn) = F (X1, . . . , Xn)Sn, and so this follows from
(3.10).
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The general polynomial of degreen

THEOREM 5.33. The Galois group of the general polynomial of degreen is Sn.

PROOF. Let f(X) be the general polynomial of degreen,

f(X) = Xn − t1X
n−1 + · · ·+ (−1)ntn ∈ F [t1, ..., tn][X].

If we can show that the map

ti 7→ pi : F [t1, . . . , tn]→ F [p1, . . . , pn]

is injective (i.e., thepi are algebraically independent overF , see p77), then it will extend
to an isomorphism

F (t1, . . . , tn)→ F (p1, . . . , pn)

sendingf(X) to

g(X) = Xn − p1X
n−1 + · · ·+ (−1)npn ∈ F (p1, . . . , pn)[X].

But g(X) =
∏

(X−Xi) in F (X1, . . . , Xn)[X], and soF (X1, . . . , Xn) is the splitting field
of g(X) overF (p1, . . . , pn). Corollary 5.32 then shows thatg has Galois groupSn, which
must also be the Galois group off .

Let P (t1, . . . , tn) be such thatP (p1, . . . , pn) = 0. Equation 1, 64, shows that if
m1(t1, . . . , tn) andm2(t1, . . . , tn) are distinct monomials, thenm1(p1, . . . , pn) andm2(p1, . . . , pn)
have distinct highest monomials. Therefore, cancellation can’t occur, and soP (t1, . . . , tn)
must be the zero polynomial.

REMARK 5.34. SinceSn occurs as a Galois group overQ, and every finite group occurs
as a subgroup of someSn, it follows that every finite group occurs as a Galois group over
some finite extension ofQ, but does every finite Galois group occur as a Galois group over
Q itself?

The Hilbert-Noether program for proving this was the following. Hilbert proved that
if G occurs as the Galois group of an extensionE ⊃ Q(t1, ..., tn) (the ti are variables),
then it occurs infinitely often as a Galois group overQ. For the proof, realizeE as the
splitting field of a polynomialf(X) ∈ k[t1, . . . , tn][X] and prove that for infinitely many
values of theti, the polynomial you obtain inQ[X] has Galois groupG. (This is quite a
difficult theorem—see Serre, J.-P.,Lectures on the Mordell-Weil Theorem,1989, Chapter
9.) Noether conjectured the following: LetG ⊂ Sn act onF (X1, ..., Xn) by permuting the
Xi; thenF (X1, . . . , Xn)G ≈ F (t1, ..., tn) (for variablesti). Unfortunately, Swan proved in
1969 that the conjecture is false forG the cyclic group of order47. Hence this approach
can not lead to a proof that all finite groups occur as Galois groups overQ, but it doesn’t
exclude other approaches. [For more information on the problem, see Serre, ibid., Chapter
10, and Serre, J.-P.,Topics in Galois Theory, 1992.]

REMARK 5.35. TakeF = C, and consider the subset ofCn+1 defined by the equation

Xn − T1X
n−1 + · · ·+ (−1)nTn = 0.
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It is a beautiful complex manifoldS of dimensionn. Consider the projection

π : S → Cn, (x, t1, . . . , tn) 7→ (t1, . . . , tn).

Its fibre over a point(a1, . . . , an) is the set of roots of the polynomial

Xn − a1X
n−1 + · · ·+ (−1)nan.

The discriminantD(f) of f(X) = Xn − T1X
n−1 + · · · + (−1)nTn is a polynomial in

C[T1, . . . , Tn]. Let∆ be the zero set ofD(f) in Cn. Then over each point ofCn r ∆, there
are exactlyn points ofS, andS r π−1(∆) is a covering space overCn r ∆.

A brief history

As far back as 1500 BC, the Babylonians (at least) knew a general formula for the roots of
a quadratic polynomial. Cardan (about 1515 AD) found a general formula for the roots of a
cubic polynomial. Ferrari (about 1545 AD) found a general formula for the roots of quartic
polynomial (he introduced the resolvent cubic, and used Cardan’s result). Over the next
275 years there were many fruitless attempts to obtain similar formulas for higher degree
polynomials, until, in about 1820, Ruffini and Abel proved that there are none.

Norms and traces

Recall that, for ann× n matrixA = (aij)

Tr(A) =
∑

iaii (trace ofA)
det(A) =

∑
σ∈Sn

sign(σ)a1σ(1) · · · anσ(n), (determinant ofA)
cA(X) = det(XIn − A) (characteristic polynomial ofA).

Moreover,
cA(X) = Xn − Tr(A)Xn−1 + · · ·+ (−1)n det(A).

None of these is changed whenA is replaced by its conjugateUAU−1 by an invertible
matrix U . Therefore, for any endomorphismα of a finite dimensional vector spaceV , we
can define17

Tr(α) = Tr(A), det(α) = det(A), cα(X) = cA(X)

whereA is the matrix ofα with respect to any basis ofV . If β is a second endomorphism
of V ,

Tr(α + β) = Tr(α) + Tr(β);

det(αβ) = det(α) det(β).

17The coefficients of the characteristic polynomial

cα(X) = Xn + c1X
n−1 + · · ·+ cn,

of α have the following description
ci = (−1)i Tr(α|ΛiV )

— see Bourbaki, N., Algebra, Chapter 3, 8.11.
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Now let E be a finite field extension ofF of degreen. An elementα of E defines an
F -linear map

αL : E → E, x 7→ αx,

and we define

TrE/F (α) = Tr(αL), NmE/F (α) = det(αL), cα,E/F (X) = cαL
(X).

Thus, TrE/F is a homomorphism(E, +) → (F, +), and NmE/F is a homomorphism
(E×, ·)→ (F×, ·).

EXAMPLE 5.36. (a) Consider the field extensionC ⊃ R. Forα = a + bi, the matrix ofαL

with respect to the basis{1, i} is

(
a −b
b a

)
, and so

TrC/R(α) = 2<(α), NmC/R(α) = |α|2.

(b) Fora ∈ F , aL is multiplication by the scalara. Therefore

TrE/F (a) = na , NmE/F (a) = an, ca,E/F (X) = (X − a)n

wheren = [E : F ].
Let E = Q[α, i] be the splitting field ofX8− 2. To compute the trace and norm ofα in

E, the definition requires us to compute the trace and norm of a16 × 16 matrix. The next
proposition gives us a quicker method.

PROPOSITION5.37. LetE/F be a finite extension of fields, and letf(X) be the minimum
polynomial ofα ∈ E. Then

cα,E/F (X) = f(X)[E:F [α]].

PROOF. Suppose first thatE = F [α]. In this case, we have to show thatcα(X) = f(X).
Note thatα 7→ αL is aninjectivehomomorphism fromE into the ring of endomorphisms
of E as a vector space overF . The Cayley-Hamilton theorem shows thatcα(αL) = 0, and
thereforecα(α) = 0. Hencef |cα, but they are monic of the same degree, and so they are
equal.

For the general case, letβ1, ..., βn be a basis forF [α] overF , and letγ1, ..., γm be a basis
for E overF [α]. As we saw in the proof of (1.20),{βiγk} is a basis forE overF . Write
αβi =

∑
ajiβj. Then, according to the first case proved,A =df (aij) has characteristic

polynomialf(X). But αβiγk =
∑

ajiβjγk, and so the matrix ofαL with respect to{βiγk}
breaks up inton×n blocks withA’s down the diagonal and zero matrices elsewhere, from
which it follows thatcαL

(X) = cA(X)m = f(X)m.

COROLLARY 5.38. Suppose that the roots of the minimum polynomial ofα areα1, . . . , αn

(in some splitting field containingE), and that[E : F [α]] = m. Then

Tr(α) = m
∑n

i=1αi, NmE/F α = (
∏n

i=1αi)
m

.
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PROOF. Write the minimum polynomial ofα as

f(X) = Xn + a1X
n−1 + · · ·+ an =

∏
(X − αi),

so that

a1 = −
∑

αi, and

an = (−1)n
∏

αi.

Then
cα(X) = (f(X))m = Xmn + ma1X

mn−1 + · · ·+ am
n ,

so that

TrE/F (α) = −ma1 = m
∑

αi, and

NmE/F (α) = (−1)mnam
n = (

∏
αi)

m.

EXAMPLE 5.39. (a) Consider the extensionC ⊃ R. If α ∈ C \ R, then

cα(X) = f(X) = X2 − 2<(α)X + |α|2.

If α ∈ R, thencα(X) = (X − a)2.
(b) LetE be the splitting field ofX8−2. ThenE has degree16 overQ and is generated

by α = 8
√

2 andi =
√
−1 (see Exercise 16). The minimum polynomial ofα is X8− 2, and

so
cα,Q[α]/Q(X) = X8 − 2, cα,E/Q(X) = (X8 − 2)2

TrQ[α]/Q α = 0, TrE/Q α = 0
NmQ[α]/Q α = −2, NmE/Q α = 4

REMARK 5.40. LetE be a separable extension ofF , and letΣ be the set ofF -homomorphisms
of E into an algebraic closureΩ of F . Then

TrE/F α =
∑

σ∈Σσα

NmE/F α =
∏

σ∈Σσα.

WhenE = F [α], this follows from 5.38 and the observation (cf. 2.1b) that theσα are
the roots of the minimum polynomialf(X) of α overF . In the general case, theσα are
still roots off(X) in Ω, but now each root off(X) occurs[E : F [α]] times (because each
F -homomorphismF [α]→ Ω has[E : F [α]] extensions toE). For example, ifE is Galois
overF with Galois groupG, then

TrE/F α =
∑

σ∈Gσα

NmE/F α =
∏

σ∈Gσα.

PROPOSITION5.41. For finite extensionsE ⊃M ⊃ F , we have

TrE/M ◦TrM/F = TrE/F ,

NmE/M ◦NmM/F = NmE/F .
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PROOF. If E is separable overF , then this can be proved fairly easily using the descriptions
in the above remark. We omit the proof in the general case.

PROPOSITION5.42. Letf(X) ∈ F [X] factor asf(X) =
∏m

i=1(X − αi) in some splitting
field, and letα = α1. Then, withf ′ = df

dX
(formal derivative), we have

disc f(X) = (−1)m(m−1)/2 NmF [α]/F f ′(α).

PROOF. Compute that

disc f(X)
df
=
∏

i<j(αi − αj)
2

= (−1)m(m−1)/2 ·
∏

i(
∏

j 6=i(αi − αj))

= (−1)m(m−1)/2 ·
∏

if
′(αi)

= (−1)m(m−1)/2 NmF [α]/F (f ′(α)) (by 5.40).

EXAMPLE 5.43. We compute the discriminant of

f(X) = Xn + aX + b, a, b ∈ F,

assumed to be irreducible and separable, by computing the norm of

γ
df
= f ′(α) = nαn−1 + a, f(α) = 0.

On multiplying the equation
αn + aα + b = 0

by nα−1 and rearranging, we obtain the equation

nαn−1 = −na− nbα−1.

Hence
γ = nαn−1 + a = −(n− 1)a− nbα−1.

Solving forα gives

α =
−nb

γ + (n− 1)a
.

From the last two equations, it is clear thatF [α] = F [γ], and so the minimum polynomial
of γ overF has degreen also. If we write

f

(
−nb

X + (n− 1)a

)
=

P (X)

Q(X)

P (X) = (X + (n− 1)a)n − na(X + (n− 1)a)n−1 + (−1)nnnbn−1

Q(X) = (X + (n− 1)a)n/b,

then
P (γ) = f(α) ·Q(γ) = 0.
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As

Q(γ) =
(γ + (n− 1)a)n

b
=

(−nb)n

αnb
6= 0

andP (X) is monic of degreen, it must be the minimum polynomial ofγ. ThereforeNm γ
is (−1)n times the constant term ofP (X), namely,

Nm γ = nnbn−1 + (−1)n−1(n− 1)n−1an.

Therefore,

disc(Xn + aX + b) = (−1)n(n−1)/2(nnbn−1 + (−1)n−1(n− 1)n−1an),

which is something Maple V doesn’t know (because it doesn’t understand symbols as ex-
ponents). For example,

disc(X5 + aX + b) = 55b4 + 44a5.

Exercises 21–23

21*. For a ∈ Q, let Ga be the Galois group ofX4 + X3 + X2 + X + a. Find integers
a1, a2, a3, a4 such thati 6= j =⇒ Gai

is not isomorphic goGaj
.

22*. Prove that the rational solutionsa, b ∈ Q of Pythagoras’s equationa2 + b2 = 1 are of
the form

a =
s2 − t2

s2 + t2
, b =

2st

s2 + t2
, s, t ∈ Q,

and deduce that any right triangle with integer sides has sides of length

d(m2 − n2, 2mn, m2 + n2)

for some integersd, m, andn (Hint: Apply Hilbert’s Theorem 90 to the extensionQ[i]/Q.)

23*. Prove that a finite extension ofQ can contain only finitely many roots of1.
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6 Algebraic closures

In this section, we prove that Zorn’s lemma implies that every fieldF has an algebraic
closureΩ. Recall that ifF is a subfieldC, then the algebraic closure ofF in C is an
algebraic closure ofF (1.46). If F is countable, then the existence ofΩ can be proved as
in the finite field case (4.20), namely, the set of monic irreducible polynomials inF [X] is
countable, and so we can list themf1, f2, . . .; defineEi inductively by,E0 = F , Ei = a
splitting field offi overEi−1; thenΩ =

⋃
Ei is an algebraic closure ofF .

The difficulty in showing the existence of an algebraic closure of an arbitrary fieldF is
in the set theory. Roughly speaking, we would like to take a union of a family of splitting
fields indexed by the monic irreducible polynomials inF [X], but we need to find a way
of doing this that is allowed by the axioms of set theory. After reviewing the statement of
Zorn’s Lemma, we sketch three solutions18 to the problem.

Zorn’s Lemma

DEFINITION 6.1. (a) A relation≤ on a setS is apartial ordering if it reflexive, transitive,
and anti-symmetric (a ≤ b andb ≤ a =⇒ a = b).

(b) A partial ordering is atotal ordering if, for all s, t ∈ T , eithers ≤ t or t ≤ s.
(c) An upper boundfor a subsetT of a partially ordered set(S,≤) is an elements ∈ S

such thatt ≤ s for all t ∈ T .
(d) A maximal elementof a partially ordered setS is an elements such thats ≤ s′ =⇒

s = s′.
A partially ordered set need not have any maximal elements, for example, the set of

finite subsets of an infinite set is partially ordered by inclusion, but it has no maximal
elements.

LEMMA 6.2 (ZORN’ S). Let (S,≤) be a nonempty partially ordered set for which every
totally ordered subset has an upper bound inS. ThenS has a maximal element.

Zorn’s Lemma19 is equivalent to the Axiom of Choice, and hence independent of the
axioms of set theory.

REMARK 6.3. The setS of finite subsets of an infinite set doesn’t contradict Zorn’s Lemma,
because it contains totally ordered subsets with no upper bound inS.

The following proposition is a typical application of Zorn’s Lemma — we shall use a *
to signal results that depend on Zorn’s Lemma (equivalently, the Axiom of Choice).

18There do exist naturally occurring fields, not contained inC, that are uncountable. For example, for
any fieldF there is a ringF [[T ]] of formal power series

∑
i≥0 aiT

i, ai ∈ F , and its field of fractions is
uncountable even ifF is finite.

19The following is quoted from A.J. Berrick and M.E. Keating,An Introduction to Rings and Modules,
2000: The name of the statement, although widely used (allegedly first by Lefschetz), has attracted the
attention of historians (Campbell 1978). As a ‘maximum principle’, it was first brought to prominence, and
used for algebraic purposes in Zorn 1935, apparently in ignorance of its previous usage in topology, most
notably in Kuratowski 1922. Zorn attributed to Artin the realization that the ‘lemma’ is in fact equivalent to
the Axiom of Choice (see Jech 1973). Zorn’s contribution was to observe that it is more suited to algebraic
applications like ours.
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PROPOSITION6.4 (*). Every nonzero commutative ringA has a maximal ideal (meaning,
maximal amongproper ideals).

PROOF. Let S be the set of all proper ideals inA, partially ordered by inclusion. IfT is a
totally ordered set of ideals, thenJ =

⋃
I∈T I is again an ideal, and it is proper because if

1 ∈ J then1 ∈ I for someI in T , andI would not be proper. ThusJ is an upper bound
for T . Now Zorn’s lemma implies thatS has a maximal element, which is a maximal ideal
in A.

First proof of the existence of algebraic closures

(Bourbaki, 1959, Chap. 5§4.)20 An F -algebra is a ring containingF as a subring. Let
(Ai)i∈I be a family of commutativeF -algebras, and define⊗F Ai to be the quotient of the
F -vector space with basisΠAi by the subspace generated by elements of the form:

(xi) + (yi)− (zi) with xj + yj = zj for onej ∈ I andxi = yi = zi for all i 6= j;
(xi)− a(yi) with xj = ayj for onej ∈ I andxi = yi for all i 6= j.

It can be made into a commutativeF -algebra in an obvious fashion (Bourbaki, 1989, Chap.
3, 3.9)21, and there are canonical homomorphismsAi → ⊗F Ai of F -algebras.

For each polynomialf ∈ F [X], choose a splitting fieldEf , and letΩ = (⊗F Ef )/M
whereM is a maximal ideal in⊗F Ef (whose existence is ensured by Zorn’s lemma). Note
thatF ⊂ ⊗F Ef andM ∩ F = 0. ThenΩ has no ideals other than(0) andΩ, and hence
is a field (see 1.2). The composite of theF -homomorphismEf → ⊗F Ef → Ω, being a
homomorphism of fields, is injective. Sincef splits inEf , it must also split in the larger
field Ω. The algebraic closure ofF in Ω is therefore an algebraic closure ofF (1.44).

Second proof of the existence of algebraic closures

(Jacobson 1964, p144.). After (4.20) we may assumeF to be infinite. This implies that
the cardinality of any field algebraic overF is the same as that ofF (ibid. p143). Choose
an uncountable setΞ of cardinality greater than that ofF , and identifyF with a subset of
Ξ. Let S be the set triples(E, +, ·) with E ⊂ Ξ and(+, ·) a field structure onE such that
(E, +, ·) containsF as a subfield and is algebraic over it. Write(E, +, ·) ≤ (E ′, +′, ·′)
if the first is a subfield of the second. Apply Zorn’s lemma to show thatS has maximal
elements, and then show that a maximal element is algebraically closed. (See ibid. p144
for the details.)

Third proof of the existence of algebraic closures

(E. Artin, see Dummit and Foote 1991, 13.4). Consider the polynomial ringF [. . . , xf , . . .]
in a family of variablesxf indexed by the nonconstant monic polynomialsf ∈ F [X]. If 1

20Bourbaki, N.,Éléments de math́ematique. I: Les structures fondamentales de l’analyse. Fascicule XI.
Livre II: Alg èbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs. Deuxième
édition. Actualit́es Scientifiques et Industrielles, No. 1102 Hermann, Paris 1959 iv+222 pp. (2 inserts). MR
30 #4751

21Bourbaki, Nicolas. Algebra. I. Chapters 1–3. Translated from the French. Reprint of the 1974 edition.
Elements of Mathematics. Springer-Verlag, Berlin, 1989. xxiv+709 pp.
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lies in the idealI in F [. . . , xf , . . .] generated by the polynomialsf(xf ), then

g1f1(xf1) + · · ·+ gnfn(xfn) = 1 (in F [. . . , xf , . . .])

for somegi ∈ F [. . . , xf , . . .] and some nonconstant monicfi ∈ F [X]. Let F ′ be an
extension ofF containing a rootαi of fi, i = 1, . . . , n. Under theF -homomorphism
F [. . . , xf , . . .]→ F ′, {

xfi
7→ αi

xf 7→ 0, f /∈ {f1, . . . , fn}
the above relation becomes0 = 1. From this contradiction, we deduce that1 does not
lie in I, and so Proposition 6.4 applied toF [. . . , xf , . . .]/I shows thatI is contained in a
maximal idealM . LetE1 = F [. . . , xf , . . .]/M . ThenE1 is a field containing (a copy of)F
in which every nonconstant polynomial inF [X] has at least one root. Repeat the process
starting withE1 instead ofF to obtain a fieldE2. Continue in this way to obtain a sequence
of fields

F = E0 ⊂ E1 ⊂ E2 ⊂ · · · ,

and letE =
⋃

Ei. ThenE is algebraically closed, because the coefficients of any noncon-
stant polynomialg ∈ E[X] lie in Ei for somei, and theng has a root inEi+1. Therefore,
the algebraic closure ofF in E is an algebraic closure ofF (1.46).22

(Non)uniqueness of algebraic closures

THEOREM6.5 (*). LetΩ be an algebraic closure ofF , and letE be an algebraic extension
of F . There exists anF -homomorphismE → Ω, and, ifE is also an algebraic closure of
F , then every such homomorphism is an isomorphism.

PROOF. Suppose first thatE is countably generated overF , i.e., E = F [α1, ..., αn, . . .].
Then we can extend the inclusion mapF → Ω to F [α1] (mapα1 to any root of its minimal
polynomial inΩ), then toF [α1, α2], and so on (see 2.2).

In the uncountable case, we use Zorn’s lemma. LetS be the set of pairs(M, ϕM) with
M a fieldF ⊂M ⊂ E andϕM anF -homomorphismM → Ω. Write (M, ϕM) ≤ (N, ϕN)
if M ⊂ N andϕN |M = ϕM . This makesS into a partially ordered set. LetT be a
totally ordered subset ofS. ThenM ′ =

⋃
M∈T M is a subfield ofE, and we can define

a homomorphismϕ′ : M ′ → Ω by requiring thatϕ′(x) = ϕM(x) if x ∈ M . The pair
(M ′, ϕ′) is an upper bound forT in S. Hence Zorn’s lemma gives us a maximal element
(M, ϕ) in S. Suppose thatM 6= E. Then there exists an elementα ∈ E, α /∈ M . Sinceα
is algebraic overM , we can apply (2.2) to extendϕ to M [α], contradicting the maximality
of M . HenceM = E, and the proof of the first statement is complete.

If E is algebraically closed, then every polynomialf ∈ F [X] splits inE[X] and hence
in ϕ(E)[X]. Let α ∈ Ω, and letf(X) be the minimum polynomial ofα. ThenX − α is
a factor off(X) in Ω[X], but, as we just observed,f(X) splits inϕ(E)[X]. Because of
unique factorization, this implies thatα ∈ ϕ(E).

22In fact,E is algebraic overF . To see this, note thatE1 is generated by algebraic elements overF , and
so is algebraic overF (apply 1.45). Similarly,E2 is algebraic overE1 and therefore also overF (see 1.31b).
Continuing in this way, we find that every element of everyEi is algebraic overF .
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The above proof is a typical application of Zorn’s lemma: once we know how to do
something in a finite (or countable) situation, Zorn’s lemma allows us to do it in general.

REMARK 6.6. Even for a finite fieldF , there will exist uncountably many isomorphisms
from one algebraic closure to a second, none of which is to be preferred over any other.
Thus it is (uncountably) sloppy to say that the algebraic closure ofF is unique. All one can
say is that, given two algebraic closuresΩ, Ω′ of F , then, thanks to Zorn’s Lemma, there
exists anF -isomorphismΩ→ Ω′.
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7 Infinite Galois extensions

Recall (3.10) that a finite extensionΩ of F is Galois overF if it is normal and separable,
i.e., if every irreducible polynomialf ∈ F [X] having a root inΩ hasdeg f distinct roots
in Ω. Similarly, we define an algebraic extensionΩ of F to beGaloisoverF if it is normal
and separable. Equivalently, a fieldΩ ⊃ F is Galois overF if it is a union of subfieldsE
finite and Galois overF .

For a Galois extensionΩ/F , we letGal(Ω/F ) = Aut(Ω/F ). Consider the map

σ 7→ (σ|E) : Gal(Ω/F )→
∏

Gal(E/F )

(product over the finite Galois extensionsE of F contained inΩ). This map is injective,
becauseΩ is a union of finite Galois extensions. We give each finite groupGal(E/F )
the discrete topology and

∏
Gal(E/F ) the product topology, and we giveGal(Ω/F ) the

subspace topology. Thus the subgroupsGal(Ω/E), [E : F ] < ∞, form a fundamental
system of neighbourhoods of1 in Gal(Ω/F ).

By the Tychonoff theorem,
∏

Gal(E/F ) is compact, and it is easy to see that the image
of Gal(Ω/F ) is closed — hence it is compact and Hausdorff.

THEOREM 7.1. LetΩ be Galois overF with Galois groupG. The maps

H 7→ ΩH , M 7→ Gal(Ω/M)

define a one-to-one correspondence between theclosed subgroups ofG and the interme-
diate fieldsM . A fieldM is of finite degree overF if and only if Gal(Ω/M) is open in
Gal(Ω/F ).

PROOF. Omit—it is not difficult given the finite case. See for example, E. Artin, Algebraic
Numbers and Algebraic Functions, p103.

REMARK 7.2. The remaining assertions in the Fundamental Theorem of Galois Theory
carry over to the infinite case provided that one requires the subgroups to be closed.

EXAMPLE 7.3. LetΩ be an algebraic closure of a finite fieldFp. ThenG = Gal(Ω/Fp)
contains a canonical Frobenius element,σ = (a 7→ ap), and it is generated by it as a
topological group, i.e.,G is the closure of〈σ〉. EndowZ with the topology for which the
groupsnZ, n ≥ 1, form a fundamental system of neighbourhoods of0. Thus two integers
are close if their difference is divisible by a large integer.

As for any topological group, we can completeZ for this topology. A Cauchy sequence
in Z is a sequence(ai)i≥1, ai ∈ Z, satisfying the following condition: for alln ≥ 1, there
exists anN such thatai ≡ aj mod n for i, j > N . Call a Cauchy sequence inZ trivial
if ai → 0 as i → ∞, i.e., if for all n ≥ 1, there exists anN such thatai ≡ 0 mod n.
The Cauchy sequences form a commutative group, and the trivial Cauchy sequences form
a subgroup. We definêZ to be the quotient of the first group by the second. It has a ring
structure, and the map sendingm ∈ Z to the constant sequencem, m,m, . . . identifiesZ
with a subgroup of̂Z.

Let α ∈ Ẑ be represented by the Cauchy sequence(ai). The restriction ofσ to Fpn has
ordern. Therefore(σ|Fpn)ai is independent ofi provided it is sufficiently large, and we can



7 INFINITE GALOIS EXTENSIONS 76

defineσα ∈ Gal(Ω/Fp) to be such that, for eachn, σα|Fpn = (σ|Fpn)ai for all i sufficiently
large (depending onn). The mapα 7→ σα : Ẑ→ Gal(Ω/Fp) is an isomorphism.

The groupẐ is uncountable. To most analysts, it is a little weird—its connected com-
ponents are one-point sets. To number theorists it will seem quite natural — the Chinese
remainder theorem implies that it is isomorphic to

∏
p primeZp whereZp is the ring ofp-adic

integers.

EXAMPLE 7.4. LetΩ be the algebraic closure ofQ in C; thenGal(Ω/Q) is one of the
most basic, and intractable, objects in mathematics. It is expected thateveryfinite group
occurs as a quotient of it, and it certainly hasSn as a quotient group for everyn (and every
sporadic simple group, and every...). We do understandGal(F ab/F ) whereF ⊂ C is a
finite extension ofQ andF ab is the union of all finite abelian extensions ofF contained in
C. For example,Gal(Qab/Q) ≈ Ẑ×. (This is abelian class field theory — see my notes
Class Field Theory.)



8 TRANSCENDENTAL EXTENSIONS 77

8 Transcendental extensions

In this section we consider fieldsΩ ⊃ F with Ω much bigger thanF . For example, we
could haveC ⊃ Q.

Elementsα1, ..., αn of Ω give rise to anF -homomorphism

f 7→ f(α1, ..., αn) : F [X1, . . . , Xn]→ Ω.

If the kernel of this homomorphism is zero, then theαi are said to bealgebraically in-
dependentoverF , and otherwise, they arealgebraically dependentoverF . Thus, theαi

are algebraically dependent overF if there exists a nonzero polynomialf(X1, ..., Xn) ∈
F [X1, ..., Xn] such thatf(α1, ..., αn) = 0, and they are algebraically independent if

ai1,...,in ∈ F,
∑

ai1,...,inαi1
1 ...αin

n = 0 =⇒ ai1,...,in = 0 all i1, ..., in.

Note the similarity with linear independence. In fact, iff is required to be homogeneous
of degree 1, then the definition becomes that of linear independence.

EXAMPLE 8.1. (a) A single elementα is algebraically independent overF if and only if it
is transcendental overF.

(b) The complex numbersπ ande are almost certainly algebraically independent over
Q, but this has not been proved.

An infinite setA is algebraically independentover F if every finite subset ofA is
algebraically independent; otherwise, it isalgebraically dependentoverF .

REMARK 8.2. If α1, ..., αn are algebraically independent overF , then

f(X1, ..., Xn) 7→ f(α1, ..., αn) : F [X1, ..., Xn]→ F [α1, ..., αn]

is an injection, and hence an isomorphism. This isomorphism then extends to the fields of
fractions,

Xi 7→ αi : F (X1, ..., Xn)→ F (α1, ..., αn)

In this case,F (α1, ..., αn) is called apure transcendental extensionof F . The polynomial

f(X) = Xn − α1X
n−1 + . . . (−1)nαn

has Galois groupSn overF (α1, ..., αn) (5.33).

LEMMA 8.3. Letγ ∈ Ω and letA ⊂ Ω. The following conditions are equivalent:
(a) γ is algebraic overF (A);
(b) there existβ1, . . . , βn ∈ F (A) such thatγn + β1γ

n−1 + · · ·+ βn = 0;
(c) there existβ0, β1, . . . , βn ∈ F [A], not all 0, such thatβ0γ

n +β1γ
n−1 + · · ·+βn = 0;

(d) there exists anf(X1, . . . , Xm, Y ) ∈ F [X1 . . . , Xm, Y ] and α1, . . . , αm ∈ A such
thatf(α1, . . . , αm, Y ) 6= 0 butf(α1, . . . , αm, γ) = 0.
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PROOF. (a) =⇒ (b) =⇒ (c) =⇒ (a) are obvious.
(d) =⇒ (c). Writef(X1, . . . , Xm, Y ) as a polynomial inY with coefficients inF [X1, . . . , Xm],

f(X1, . . . , Xm, Y ) =
∑

fi(X1, . . . , Xm)Y n−i.

Then (c) holds withβi = fi(α1, . . . , αm).
(c) =⇒ (d). Theβi in (c) can be expressed as polynomials in a finite number of elements

α1, . . . , αm of A, say,βi = fi(α1, . . . , αm) with fi ∈ F [X1, . . . , Xm]. Then (d) holds with
f =

∑
fi(X1, . . . , Xm)Y n−i.

DEFINITION 8.4. Whenγ satisfies the equivalent conditions of Lemma 8.3, it is said to be
algebraically dependenton A (overF ). A setB is algebraically dependenton A if each
element ofB is algebraically dependent onA.

The theory in the remainder of this section is logically very similar to a part of linear
algebra. It is useful to keep the following correspondences in mind:

Linear algebra Transcendence
linearly independent algebraically independent

A ⊂ span(B) A algebraically dependent onB
basis transcendence basis

dimension transcendence degree

THEOREM 8.5 (FUNDAMENTAL RESULT). LetA = {α1, ..., αm} andB = {β1, ..., βn} be
two subsets ofΩ. Assume

(a) A is algebraically independent (overF );
(b) A is algebraically dependent onB (overF ).

Thenm ≤ n.
We first prove two lemmas.

LEMMA 8.6 (THE EXCHANGE PROPERTY). Let {α1, ..., αm} be a subset ofΩ; if β is al-
gebraically dependent on{α1, ..., αm} but not on{α1, ..., αm−1}, thenαm is algebraically
dependent on{α1, ..., αm−1, β}.

PROOF. Becauseβ is algebraically dependent on{α1, . . . , αm}, there exists a polynomial
f(X1, ..., Xm, Y ) with coefficients inF such that

f(α1, ..., αm, Y ) 6= 0, f(α1, ..., αm, β) = 0.

Write f as a polynomial inXm,

f(X1, ..., Xm, Y ) =
∑

i

ai(X1, ..., Xm−1, Y )Xn−i
m ,

and observe that, becausef(α1, . . . , αm, Y ) 6= 0, at least one of the polynomialsai(α1, ..., αm−1, Y ),
sayai0, is not the zero polynomial. Becauseβ is not algebraically dependent on{α1, ..., αm−1},
ai0(α1, ..., αm−1, β) 6= 0. Therefore,f(α1, ..., αm−1, Xm, β) 6= 0. Sincef(α1, ..., αm, β) =
0, this shows thatαm is algebraically dependent on{α1, ..., αm−1, β}.
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LEMMA 8.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCE). If C is algebraically depen-
dent onB, andB is algebraically dependent onA, thenC is algebraically dependent on
A.

PROOF. The argument in the proof of Proposition 1.44 shows that ifγ is algebraic over a
field E which is algebraic over a fieldF , thenγ is algebraic overF (if a1, . . . , an are the
coefficients of the minimum polynomial ofγ over E, then the fieldF [a1, . . . , an, γ] has
finite degree overF ). Apply this withE = F (A ∪B) andF = F (A).

PROOF OFTHEOREM 8.5. Let k be the number of elements thatA andB have in com-
mon. If k = m, thenA ⊂ B, and certainlym ≤ n. Suppose thatk < m, and writeB =
{α1, ..., αk, βk+1, ..., βn}. Sinceαk+1 is algebraically dependent on{α1, ..., αk, βk+1, ..., βn}
but not on{α1, ..., αk}, there will be aβj, k + 1 ≤ j ≤ n, such thatαk+1 is algebraically
dependent on{α1, ..., αk, βk+1, ..., βj} but not

{α1, ..., αk, βk+1, ..., βj−1}.

The exchange lemma then shows thatβj is algebraically dependent on

B1
df
= B ∪ {αk+1}r {βj}.

ThereforeB is algebraically dependent onB1, and soA is algebraically dependent onB1

(by 8.7). If k + 1 < m, repeat the argument withA andB1. Eventually we’ll achieve
k = m, andm ≤ n.

DEFINITION 8.8. A transcendence basisfor Ω overF is an algebraically independent set
A such thatΩ is algebraic overF (A).

LEMMA 8.9. If Ω is algebraic overF (A), andA is minimal among subsets ofΩ with this
property, then it is a transcendence basis forΩ overF .

PROOF. If A is not algebraically independent, then there is anα ∈ S that is algebraically
dependent onSr{α}. It follows from Lemma 8.7 thatΩ is algebraic overF (Ar{α}).

THEOREM 8.10. If there is a finite subsetA ⊂ Ω such thatΩ is algebraic overF (A), then
Ω has a finite transcendence basis overF . Moreover, every transcendence basis is finite,
and they all have the same number of elements.

PROOF. In fact, any minimal subsetA′ of A such thatΩ is algebraic overF (A′) will be a
transcendence basis. The second statement follows from Theorem 8.5.

LEMMA 8.11. Suppose thatA is algebraically independent, but thatA ∪ {β} is alge-
braically dependent. Thenβ is algebraic overF (A).

PROOF. The hypothesis is that there exists a nonzero polynomialf(X1, ..., Xn, Y ) ∈ F [X1, ..., Xn, Y ]
such thatf(α1, ..., αn, β) = 0, some distinctα1, ..., αn ∈ A. BecauseA is algebraically
independent,Y does occur inf . Therefore

f = g0Y
m + g1Y

m−1 + · · ·+ gm, gi ∈ F [X1, ..., Xn], g0 6= 0, m ≥ 1.
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As g0 6= 0 and theαi are algebraically independent,g0(α1, ..., αn) 6= 0. Becauseβ is a root
of

f = g0(α1, ..., αn)Xm + g1(α1, ..., αn)Xm−1 + · · ·+ gm(α1, ..., αn),

it is algebraic overF (α1, ..., αn) ⊂ F (A).

PROPOSITION8.12. Every maximal algebraically independent subset ofΩ is a transcen-
dence basis forΩ overF .

PROOF. We have to prove thatΩ is algebraic overF (A) if A is maximal among alge-
braically independent subsets. But the maximality implies that, for everyβ ∈ Ω r A,
A ∪ {β} is algebraically dependent, and so the lemma shows thatβ is algebraic over
F (A).

THEOREM 8.13 (*). Every fieldΩ containingF has a transcendence basis overF.

PROOF. Let S be the set of algebraically independent subsets ofΩ. We can partially order
it by inclusion. LetT be a totally ordered subset, and letB = ∪{A | A ∈ T}. I claim that
B ∈ S, i.e., thatB is algebraically independent. If not, there exists a finite subsetB′ of
B that is not algebraically independent. But such a subset will be contained in one of the
sets inT , which is a contradiction. Now Zorn’s Lemma shows that there exists a maximal
algebraically independent, which, according to Proposition 8.12, is a transcendence basis
for Ω overF .

It is possible to show that any two (possibly infinite) transcendence bases forΩ overF
have the same cardinality. The cardinality of a transcendence basis forΩ overF is called
the transcendence degreeof Ω over F . For example, the pure transcendental extension
F (X1, . . . , Xn) has transcendence degreen overF .

EXAMPLE 8.14. Letp1, . . . , pn be the elementary symmetric polynomials inX1, . . . , Xn.
The fieldF (X1, . . . , Xn) is algebraic overF (p1, . . . , pn), and so{p1, p2, . . . , pn} contains a
transcendence basis forF (X1, . . . , Xn). BecauseF (X1, . . . , Xn) has transcendence degree
n, thepi’s must themselves be a transcendence basis.

EXAMPLE 8.15. LetΩ be the field of meromorphic functions on a compact complex man-
ifold M .

(a) The only meromorphic functions on the Riemann sphere are the rational functions
in z. Hence, in this case,Ω is a pure transcendental extension ofC of transcendence degree
1.

(b) If M is a Riemann surface, then the transcendence degree ofΩ overC is 1, andΩ
is a pure transcendental extension ofC ⇐⇒ M is isomorphic to the Riemann sphere

(c) If M has complex dimensionn, then the transcendence degree is≤ n, with equality
holding if M is embeddable in some projective space.

PROPOSITION8.16. Any two algebraically closed fields with the same transcendence de-
gree overF areF -isomorphic.
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PROOF. Choose transcendence basesA andA′ for the two fields. By assumption, there
exists a bijectionϕ : A→ A′, whichϕ extends uniquely to anF -isomorphismϕ : F [A]→
F [A′], and hence to anF -isomorphism of the fields of fractionsF (A) → F (A′). Use this
isomorphism to identifyF (A) with F (A′). Then the two fields in question are algebraic
closures of the same field, and hence are isomorphic (Theorem 6.5).

REMARK 8.17. Any two algebraically closed fields with the same uncountable cardinality
and the same characteristic are isomorphic. The idea of the proof is as follows. LetF and
F ′ be the prime subfields ofΩ andΩ′; we can identifyF with F ′. Then show that whenΩ
is uncountable, the cardinality ofΩ is the same as the cardinality of a transcendence basis
overF . Finally, apply the proposition.

REMARK 8.18. What are the automorphisms ofC? There are only two continuous auto-
morphisms (cf. Exercise 31 and solution). If we assume Zorn’s Lemma, then it is easy
to construct many: choose any transcendence basisA for C overQ, and choose any per-
mutationα of A; thenα defines an isomorphismQ(A) → Q(A) that can be extended to
an automorphism ofC. Without Zorn’s Lemma, there are only two, because the noncon-
tinuous automorphisms are nonmeasurable (or, so I’ve been told), and it is known that the
Zorn’s Lemma (equivalently, the Axiom of Choice) is required to construct nonmeasurable
functions.

THEOREM 8.19 (LÜROTH’ S THEOREM). Any subfieldE of F (X) containingF but not
equal toF is a pure transcendental extension ofF .

PROOF. Jacobson 1964, IV 4, p157.

REMARK 8.20. This fails when there is more than one variable — see Zariski’s example
(footnote to Remark 5.5) and Swan’s example (Remark 5.34). The best true statement is
the following: if [F (X, Y ) : E] < ∞ andF is algebraically closed of characteristic zero,
thenE is a pure transcendental extension ofF (Theorem of Zariski, 1958).
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A Review exercises

24. Let p be a prime number, and letm andn be positive integers.
(a) Give necessary and sufficient conditions onm andn for Fpn to have a subfield iso-

morphic withFpm. Prove your answer.
(b) If there is such a subfield, how many subfields isomorphic withFpm are there, and

why?

25. Show that the Galois group of the splitting fieldF of X3 − 7 over Q is isomorphic
to S3, and exhibit the fields betweenQ andF . Which of the fields betweenQ andF are
normal overQ?

26. Prove that the two fieldsQ[
√

7] andQ[
√

11] are not isomorphic.

27.
(a) Prove that the multiplicative group of all nonzero elements in a finite field is cyclic.
(b) Construct explicitly a field of order9, and exhibit a generator for its multiplicative

group.

28. Let X be transcendental over a fieldF , and letE be a subfield ofF (X) properly
containingF . Prove thatX is algebraic overE.

29. Prove as directly as you can that ifζ is a primitivepth root of1, p prime, then the Galois
group ofQ[ζ] overQ is cyclic of orderp− 1.

30. Let G be the Galois group of the polynomialX5 − 2 overQ.
(a) Determine the order ofG.
(b) Determine whetherG is abelian.
(c) Determine whetherG is solvable.

31.
(a) Show that every field homomorphism fromR to R is bijective.
(b) Prove thatC is isomorphic to infinitely many different subfields of itself.

32. Let F be a field with16 elements. How many roots inF does each of the following
polynomials have?X3 − 1; X4 − 1; X15 − 1; X17 − 1.

33. Find the degree of a splitting field of the polynomial(X3 − 5)(X3 − 7) overQ.

34. Find the Galois group of the polynomialX6 − 5 over each of the fieldsQ andR.

35. The coefficients of a polynomialf(X) are algebraic over a fieldF . Show thatf(X)
divides some nonzero polynomialg(X) with coefficients inF .

36. Let f(X) be a polynomial inF [X] of degreen, and letE be a splitting field off . Show
that [E : F ] dividesn!.

37. Find a primitive element for the fieldQ[
√

3,
√

7] over Q, i.e., an element such that
Q[
√

3,
√

7] = Q[α].

38. Let G be the Galois group of(X4 − 2)(X3 − 5) overQ.
(a) Give a set of generators forG, as well as a set of defining relations.
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(b) What is the structure ofG as an abstract group (is it cyclic, dihedral, alternating,
symmetric, etc.)?

39. Let F be a finite field of characteristic6= 2. Prove thatX2 = −1 has a solution inF if
and only if#F ≡ 1 mod 4.

40. Let E be the splitting field overQ of (X2 − 2)(X2 − 5)(X2 − 7). Find an elementα
in E such thatE = Q[α]. (You must prove thatE = Q[α].)

41. Let E be a Galois extension ofF with Galois groupSn, n > 1 not prime. LetH1 be
the subgroup ofSn of elements fixing1, and letH2 be the subgroup generated by the cycle
(123 . . . n). Let Ei = EHi, i = 1, 2. Find the degrees ofE1, E2, E1 ∩ E2, andE1E2 over
F . Show that there exists a fieldM such thatF ⊂M ⊂ E2, M 6= F , M 6= E2, but that no
such field exists forE1.

42. Let ζ be a primitive12th root of 1 overQ. How many fields are there strictly between
Q[ζ3] andQ[ζ].

43. For the polynomialX3 − 3, find explicitly its splitting field overQ and elements that
generate its Galois group.

44. Let E = Q[ζ], ζ5 = 1, ζ 6= 1. Show thati /∈ E, and that ifL = E[i], then−1 is a norm
from L to E. Herei =

√
−1.

45. Let E be an extension field ofF , and letΩ be an algebraic closure ofE. Letσ1, . . . , σn

be distinctF -isomorphismsE → Ω.
(a) Show thatσ1, . . . , σn are linearly dependent overΩ.
(b) Show that[E : F ] ≥ m.
(c) Let F have characteristicp > 0, and letL be a subfield ofΩ containingE and

such thatap ∈ E for all a ∈ L. Show that eachσi has a unique extension to a
homomorphismσ′i : L→ Ω.

46. Identify the Galois group of the splitting fieldK of X4 − 3 over Q. Determine the
number of quadratic subfields.

47. Let F be a subfield of a finite fieldE. Prove that the trace mapT = TrE/F and the
norm mapN = NmE/F of E overF both mapE ontoF . (You may quote basic properties
of finite fields and the trace and norm.)

48. Prove or disprove by counterexample.
(a) If L/K is an extension of fields of degree2, then there is an automorphismσ of L

such thatK is the fixed field ofσ.
(b) The same as (a) except thatL is also given to be finite.

49. A finite Galois extensionL of a fieldK has degree8100. Show that there is a fieldF
with K ⊂ F ⊂ L such that[F : K] = 100.

50. An algebraic extensionL of a fieldK of characteristic0 is generated by an elementθ
that is a root of both of the polynomialsX3 − 1 andX4 + X2 + 1. Given thatL 6= K, find
the minimum polynomial ofθ.

51. Let F/Q be a Galois extension of degree3n, n ≥ 1. Prove that there is a chain of fields

Q = F0 ⊂ F1 ⊂ · · ·Fn = F
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such that for everyi, 0 ≤ i ≤ n− 1, [Fi+1 : Fi] = 3.

52. Let L be the splitting field overQ of an equation of degree5 with distinct roots.
Suppose thatL has an automorphism that fixes three of these roots while interchanging the
other two and also an automorphismα 6= 1 of order5.

(a) Prove that the group of automorphisms ofL is the symmetric group on5 elements.
(b) How many proper subfields ofL are normal extensions ofQ? For each such fieldF ,

what is[F : Q]?

53. If L/K is a separable algebraic field extension of finite degreed, show that the number
of fields betweenK andL is at most2d!.

54. Let K be the splitting field overQ of X5− 1. Describe the Galois groupGal(K/Q) of
K overQ, and show thatK has exactly one subfield of degree2 overQ, namely,Q[ζ +ζ4],
ζ 6= 1 a root ofX5 − 1. Find the minimum polynomial ofζ + ζ4 overQ. FindGal(L/Q)
whenL is the splitting field overQ of

(a) (X2 − 5)(X5 − 1);
(b) (X2 + 3)(X5 − 1).

55. Let Ω1 andΩ2 be algebraically closed fields of transcendence degree5 overQ, and let
α : Ω1 → Ω2 be a homomorphism (in particular,α(1) = 1). Show thatα is a bijection.
(State carefully any theorems you use.)

56. Find the group ofQ-automorphisms of the fieldk = Q[
√
−3,
√
−2].

57. Prove that the polynomialf(X) = X3−5 is irreducible over the fieldQ[
√

7]. If L is the
splitting field off(X) overQ[

√
7], prove that the Galois group ofL/Q[

√
7] is isomorphic

to S3. Prove that there must exist a subfieldK of L such that the Galois group ofL/K is
cyclic of order3.

58. Identify the Galois groupG of the polynomialf(X) = X5 − 6X4 + 3 overF , when
(a) F = Q and when (b)F = F2. In each case, ifE is the splitting field off(X) overF ,
determine how many fieldsK there are such thatE ⊃ K ⊃ F with [K : F ] = 2.

59. LetK be a field of characteristicp, say withpn elements, and letθ be the automorphism
of K that maps every element to itspth power. Show that there exists an automorphismα
of K such thatθα2 = 1 if and only if n is odd.

60. Describe the splitting field and Galois group, overQ, of the polynomialX5 − 9.

61. Suppose thatE is a Galois field extension of a fieldF such that[E : F ] = 53 · (43)2.
Prove that there exist fieldsK1 andK2 lying strictly betweenF andE with the following
properties: (i) eachKi is a Galois extension ofF ; (ii) K1 ∩K2 = F ; and (iii) K1K2 = E.

62. Let F = Fp for some primep. Let m be a positive integer not divisible byp, and letK
be the splitting field ofXm − 1. Find [K : F ] and prove that your answer is correct.

63. LetF be a field of 81 elements. For each of the following polynomialsg(X), determine
the number of roots ofg(X) that lie inF : X80 − 1, X81 − 1, X88 − 1.

64. Describe the Galois group of the polynomialX6 − 7 overQ.
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65. Let K be a field of characteristicp > 0 and letF = K(u, v) be a field extension of
degreep2 such thatup ∈ K andvp ∈ K. Prove thatK is not finite, thatF is not a simple
extension ofK, and that there exist infinitely many intermediate fieldsF ⊃ L ⊃ K.

66. Find the splitting field and Galois group of the polynomialX3−5 over the fieldQ[
√

2].

67. For any primep, find the Galois group overQ of the polynomialX5 − 5p4X + p.

68. FactorizeX4 + 1 over each of the finite fields (a)F5; (b) F25; and (c)F125. Find its
splitting field in each case.

69. Let Q[α] be a field of finite degree overQ. Assume that there is aq ∈ Q, q 6= 0,
such that|ρ(α)| = q for all homomorphismsρ : Q[α] → C. Show that the set of roots
of the minimum polynomial ofα is the same as that ofq2/α. Deduce that there exists an
automorphismσ of Q[α] such that

(a) σ2 = 1 and
(b) ρ(σγ) = ρ(γ) for all γ ∈ Q[α] andρ : Q[α]→ C.

70. Let F be a field of characteristic zero, and letp be a prime number. Suppose thatF
has the property that all irreducible polynomialsf(X) ∈ F [X] have degree a power of
p (1 = p0 is allowed). Show that every equationg(X) = 0, g ∈ F [X], is solvable by
extracting radicals.

71. Let K = Q[
√

5,
√
−7] and letL be the splitting field overQ of f(X) = X3 − 10.

(a) Determine the Galois groups ofK andL overQ.
(b) Decide whetherK contains a root off .
(c) Determine the degree of the fieldK ∩ L overQ.

[Assume all fields are subfields ofC.]

72. Find the splitting field (overFp) of Xpr − X ∈ Fp[X], and deduce thatXpr − X has
an irreducible factorf ∈ Fp[X] of degreer. Let g(X) ∈ Z[X] be a monic polynomial
that becomes equal tof(X) when its coefficients are read modulop. Show thatg(X) is
irreducible inQ[X].

73. Let E be the splitting field ofX3 − 51 overQ. List all the subfields ofE, and find an
elementγ of E such thatE = Q[γ].

74. Let k = F1024 be the field with1024 elements, and letK be an extension ofk of degree
2. Prove that there is a unique automorphismσ of K of order2 which leavesk elementwise
fixed and determine the number of elements ofK× such thatσ(x) = x−1.

75. Let F andE be finite fields of the same characteristic. Prove or disprove these state-
ments:

(a) There is a ring homomorphism ofF into E if and only if #E is a power of#F .
(b) There is an injective group homomorphism of the multiplicative group ofF into the

multiplicative group ofE if and only if #E is a power of#F .

76. Let L/K be an algebraic extension of fields. Prove thatL is algebraically closed if
every polynomial overK factors completely overL.

77. Let K be a field, and letM = K(X), X an indeterminate. LetL be an intermediate
field different fromK. Prove thatM is finite-dimensional overL.

78. Let θ1, θ2, θ3 be the roots of the polynomialf(X) = X3 + X2 − 9X + 1.



A REVIEW EXERCISES 86

(a) Show that theθi are real, nonrational, and distinct.
(b) Explain why the Galois group off(X) over Q must be eitherA3 or S3. Without

carrying it out, give a brief description of a method for deciding which it is.
(c) Show that the rows of the matrix

3 9 9 9
3 θ1 θ2 θ3

3 θ2 θ3 θ1

3 θ3 θ1 θ2


are pairwise orthogonal; compute their lengths, and compute the determinant of the
matrix.

79. Let E/K be a Galois extension of degreep2q wherep andq are primes,q < p andq
not dividingp2 − 1. Prove that:

(a) there exist intermediate fieldsL andM such that[L : K] = p2 and[M : K] = q;
(b) such fieldsL andM must be Galois overK; and
(c) the Galois group ofE/K must be abelian.

80. Let ζ be a primitive7th root of1 (in C).
(a) Prove that1 +X +X2 +X3 +X4 +X5 +X6 is the minimum polynomial ofζ over

Q.
(b) Find the minimum polynomial ofζ + 1

ζ
overQ.

81. Find the degree overQ of the Galois closureK of Q[2
1
4 ] and determine the isomor-

phism class ofGal(K/Q).

82. Letp, q be distinct positive prime numbers, and consider the extensionK = Q[
√

p,
√

q] ⊃
Q.

(a) Prove that the Galois group is isomorphic toC2 × C2.
(b) Prove that every subfield ofK of degree2 over Q is of the formQ[

√
m] where

m ∈ {p, q, pq}.
(c) Show that there is an elementγ ∈ K such thatK = Q[γ].
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B Solutions to Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions.
1. Similar to Example 1.28.

2. Verify that3 is not a square inQ[
√

2], and so[Q[
√

2,
√

3] : Q] = 4.

3. (a) Apply the division algorithm, to getf(X) = q(X)(X − a) + r(X) with r(X)
constant, and putX = a to find r = f(a).
(c) Use that factorization inF [X] is unique (or use induction on the degree off ).
(d) If G had two cyclic factorsC andC ′ whose orders were divisible by a primep, thenG
would have (at least)p2 elements of order dividingp. This doesn’t happen, and it follows
thatG is cyclic.
(e) The elements of orderm in F× are the roots of the polynomialXm − 1, and so there
are at mostm of them. Hence any finite subgroupG of F× satisfies the condition in (d).

4. Note that it suffices to constructα = cos 2π
7

, and that[Q[α] : Q] = 7−1
2

= 3, and so
its minimum polynomial has degree3. There is a standard method (once taught in high
schools) for solving cubics using the equation

cos 3θ = 4 cos3 θ − 3 cos θ.

By “completing the cube”, reduce the cubic to the formX3 − pX − q. Then constructa
so thata2 = 4p

3
. Choose3θ such thatcos 3θ = 4q

a3 . If β = cos θ is a solution of the above
equation, thenα = aβ will be a root ofX3 − pX − q.

5. (a) is obvious, as is the “only if” in (b). For the “if” note that for anya ∈ S(E), a /∈ F 2,
E ≈ F [X]/(X2 − a).

(c) TakeEi = Q[
√

pi] with pi theith prime. Check thatpi is the only prime that becomes
a square inEi. For this use that(a + b

√
p)2 ∈ Q =⇒ 2ab = 0.

(d) Any field of characteristicp contains (an isomorphic copy of)Fp, and so we are
looking at the quadratic extensions ofFp. The homomorphisma 7→ a2 : F×p → F×p has
kernel{±1}, and so its image has index2 in F×p . Thus the only possibility forS(E) is F×p ,
and so there is at most oneE (up toFp-isomorphism). To get one, takeE = F [X]/(X2−a),
a /∈ F2

p.

6. (a) If α is a root off(X) = Xp − X − a (in some splitting field), then the remaining
roots areα + 1, . . . , α + p− 1, which obviously lie in whichever field containsα. Suppose
that, inF [X],

f(X) = (Xr + a1X
r−1 + · · ·+ ar)(X

p−r + · · · ), 0 < r < p.

Then−a1 is a sum ofr of the roots off , −a1 = rα + d somed ∈ Z · 1F , and it follows
thatα ∈ F .

(b) The polynomialXp − X − 1 has no root inF2 (check0 and1), and therefore (a)
impliesXp −X − 1 is irreducible inF2[X], and also inZ[X] (see 1.18).

7. Let α be the real5th root of 2. Eisenstein’s criterion shows thatX5 − 2 is irre-
ducible in Q[X], and soQ[ 5

√
2] has degree5 over Q. The remaining roots ofX5 − 2
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areζα, ζ2α, ζ3α, ζ4α, whereζ is a primitive5th root of 1. It follows that the subfield ofC
generated by the roots ofX5 − 2 is Q[ζ, α]. The degree ofQ[ζ, α] is 20, since it must be
divisible by [Q[ζ] : Q] = 4 and[Q[α] : Q] = 5.

8. It’s Fp becauseXpm − 1 = (X − 1)pm
. (Perhaps I meantXpm −X — that would have

been more interesting.)

9. If f(X) =
∏

(X − αi)
mi, αi 6= αj, then

f ′(X) =
∑

mi
f(X)

X − αi

and sod(X) =
∏

mi>1(X − αi)
mi−1. Thereforeg(X) =

∏
(X − αi).

10. From (2.12) we know that eitherf is separable orf(X) = f1(X
p) for some polynomial

f1. Clearlyf1 is also irreducible. Iff1 is not separable, it can be writtenf1(X) = f2(X
p).

Continue in the way until you arrive at a separable polynomial. For the final statement, note
thatg(X) =

∏
(X − ai), ai 6= aj, and sof(X) = g(Xpe

) =
∏

(X − αi)
pe

with αpe

i = ai.

11. Let σ andτ be automorphisms ofF (X) given byσ(X) = −X andτ(X) = 1 − X.
Thenσ andτ fix X2 andX2−X respectively, and soστ fixesE =df F (X)∩F (X2−X).
But ατX = 1 + X, and so(στ)m(X) = m + X. ThusAut(F (X)/E) is infinite, which
implies that[F (X) : E] is infinite (otherwiseF (X) = E[α1, . . . , αn]; anE-automorphism
of F (X) is determined by its values on theαi, and its value onαi is a root of the minimum
polynomial ofαi). If E contains a polynomialf(X) of degreem > 0, then[F (X) : E] ≤
[F (X) : F (f(X))] = m — contradiction.

12. Since1 + ζ + · · · + ζp−1 = 0, we haveα + β = −1. If i ∈ H, theniH = H and
i(G r H) = G r H, and soα andβ are fixed byH. If j ∈ G r H, thenjH = G r H and
j(G r H) = H, and sojα = β andjβ = α. Henceαβ ∈ Q, andα andβ are the roots of
X2 + X + αβ. Note that

αβ =
∑
i,j

ζ i+j, i ∈ H, j ∈ G r H.

How many times do we havei+j = 0? If i+j = 0, then−1 = i−1j, which is a nonsquare;
conversely, if−1 is a nonsquare, takei = 1 andj = −1 to geti + j = 0. Hence

i + j = 0 somei ∈ H, j ∈ G r H ⇐⇒ −1 is a square modp ⇐⇒ p ≡ −1 mod 4.

If we do have a solution toi + j = 0, we get all solutions by multiplying it through by
the p−1

2
squares. So in the sum forαβ we see 1 a total ofp−1

2
times whenp ≡ 3 mod 4

and not at all ifp ≡ 1 mod 4. In either case, the remaining terms add to a rational
number, which implies that each power ofζ occurs the same number of times. Thus for
p ≡ 1 mod 4, αβ = −(p−1

2
)2/(p − 1) = p−1

4
; the polynomial satisfied byα andβ is

X2 + X − p−1
4

, whose roots are(−1±
√

1 + p− 1)/2; the fixed field ofH is Q[
√

p]. For
p ≡ −1 mod 4, αβ = p−1

2
+ (−1)

(
(p−1

2
)2 − p−1

2

)
/(p − 1) = p−1

2
− p−3

4
= p+1

4
; the

polynomial isX2 + X + p−1
4

, with roots(−1 ±
√

1− p− 1)/2; the fixed field ofH is
Q[
√
−p].
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13. (a) It is easy to see thatM is Galois overQ with Galois group〈σ, τ〉:{
σ
√

2 = −
√

2

σ
√

3 =
√

3

{
τ
√

2 =
√

2

τ
√

3 = −
√

3
.

(b) We have

σα2

α2
=

2−
√

2

2 +
√

2
=

(2−
√

2)2

4− 2
=

(
2−
√

2√
2

)2

= (
√

2− 1)2,

i.e.,σα2 = ((
√

2− 1)α)2. Thus, ifα ∈M , thenσα = ±(
√

2− 1)α, and

σ2α = (−
√

2− 1)(
√

2− 1)α = −α;

asσ2α = α 6= 0, this is impossible. Henceα /∈M , and so[E : Q] = 8.
Extendσ to an automorphism (also denotedσ) of E. Again σα = ±(

√
2 − 1)α and

σ2α = −α, and soσ2 6= 1. Now σ4α = α, σ4|M = 1, and so we can conclude thatσ has
order4. After possibly replacingσ with its inverse, we may suppose thatσα = (

√
2−1)α.

Repeat the above argument withτ : τα2

α2 = 3−
√

3
3+
√

3
=
(

3−
√

3√
6

)2

, and so we can extendτ to an

automorphism ofL (also denotedτ ) with τα = 3−
√

3√
6

α. The order ofτ is 4.
Finally compute that

στα =
3−
√

3

−
√

6
(
√

2− 1)α; τσα = (
√

2− 1)
3−
√

3√
6

α.

Henceστ 6= τσ, andGal(E/Q) has two noncommuting elements of order4. Since it has
order8, it must be the quaternion group.

14. The splitting field is the smallest field containing allmth roots of1. Hence it isFpn

wheren is the smallest positive integer such thatm0|pn − 1, m = m0p
r.

15. We haveX4 − 2X3 − 8X − 3 = (X3 + X2 + 3X + 1)(X − 3), and g(X) =
X3 +X2 +3X +1 is irreducible overQ (use 1.4??), and so its Galois group is eitherA3 or
S3. Either check that its discriminant is not a square or, more simply, show by examining its
graph thatg(X) has only one real root, and hence its Galois group contains a transposition
(cf. the proof of 4.13??).

16. Eisenstein’s criterion shows thatX8 − 2 is irreducible overQ, and so[Q[α] : Q] = 8
whereα is a positive8th root of2. As usual for polynomials of this type, the splitting field
is Q[α, ζ] whereζ is any primitive8th root of 1. For example,ζ can be taken to be1+i√

2
,

which lies inQ[α, i]. It follows that the splitting field isQ[α, i]. ClearlyQ[α, i] 6= Q[α],
becauseQ[α], unlike i, is contained inR, and so[Q[α, i] : Q] = 2. Therefore the degree is
2× 8 = 16.

17. Find an extensionL/F with Galois groupS4, and letE be the fixed field ofS3 ⊂ S4.
There is no subgroup strictly betweenSn andSn−1, because such a subgroup would be
transitive and contain an(n − 1)-cycle and a transposition, and so would equalSn (see
4.23). We can takeE = LS3 .
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18. Type: “Factor(X343 −X) mod 7;” and discard the7 factors of degree1.

19. Type “galois(X6 + 2X5 + 3X4 + 4X3 + 5X2 + 6X + 7);”. It is the groupPGL2(F5)
(group of invertible2 × 2 matrices overF5 modulo scalar matrices) which has order120.
Alternatively, note that there are the following factorizations: mod3, irreducible; mod5
(deg3)(deg3); mod13 (deg1)(deg5); mod19, (deg1)2(deg4); mod61 (deg1)2(deg2)2;
mod79, (deg2)3. Thus the Galois group has elements of type:

6, 3 + 3, 1 + 5, 1 + 1 + 4, 1 + 1 + 2 + 2, 2 + 2 + 2.

No element of type2, 3, 3 + 2, or 4 + 2 turns up by factoring modulo any of the first400
primes (or, so I have been told). This suggests it is the groupT14 in the tables in Butler
and McKay, which is indeedPGL2(F5).

20. ⇐= : Condition (a) implies thatGf contains a5-cycle, condition (b) implies that
Gf ⊂ A5, and condition (c) excludesA5. That leavesD5 andC5 as the only possibilities
(see, for example, Jacobson, Basic Algebra I, p305, Ex 6). The derivative off is 5X4 + a,
which has at most2 real zeros, and so (from its graph) we see thatf can have at most3
real zeros. Thus complex conjugation acts as an element of order2 on the splitting field of
f , and this shows that we must haveGf = D5.
=⇒ : RegardD5 as a subgroup ofS5 by letting it act on the vertices of a regular

pentagon—all subgroups ofS5 isomorphic toD5 look like this one. IfGf = D5, then
(a) holds becauseD5 is transitive, (b) holds becauseD5 ⊂ A5, and (c) holds becauseD5 is
solvable.

21. Fora = 1, this is the polynomialΦ5(X), whose Galois group is cyclic of order4.
Fora = 0, it is X(X3 + X2 + X + 1) = X(X + 1)(X2 + 1), whose Galois group is cyclic
of order2.
Fora = −4, it is (X − 1)(X3 + 2X2 + 3X + 4). The cubic does not have±1,±2, or±4
as roots, and so it is irreducible inQ[X]. Hence its Galois group isS3 or A3. But looking
modulo2, we see it contains a2-cycle, so it must beS3.
For anya, the resolvent cubic is

g(X) = X3 −X2 + (1− 4a)X + 3a− 1.

Takea = −1. Thenf = X4 + X3 + X2 + X − 1 is irreducible modulo2, and so it is
irreducible inQ[X]. We haveg = X3 − X2 + 5X − 4, which is irreducible. Moreover
g′ = 3X2 − 2X + 5 = 3(X − 1

3
)2 + 42

3
> 0 always, and sog has exactly one real root.

Hence the Galois group ofg is S3, and therefore the Galois group off is S4. [In fact, 4 is
the maximum number of integers giving distinct Galois groups: checking mod2, we see
there is a2-cycle or a4-cycle, and so1, A3, A4, V4 are not possible. ForD8, a can’t be an
integer.]

22. We haveNm(a + ib) = a2 + b2. Hencea2 + b2 = 1 if and onlya + ib = s+it
s−it

for some
s, t ∈ Q (Hilbert’s Theorem 90). The rest is easy.

23. The degree[Q[ζn] : Q] = ϕ(n), ζn a primitiventh root of1, andϕ(n)→∞ asn→∞.

24. (a) Need thatm|n, because

n = [Fpn : Fp] = [Fpn : Fpm ] · [Fpm : Fp] = [Fpn : Fpm ] ·m.
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Use Galois theory to show there exists one, for example. (b) Only one; it consists of all the
solutions ofXpm −X = 0.

25. The polynomial is irreducible by Eisenstein’s criterion. The polynomial has only one
real root, and therefore complex conjugation is a transposition inGf . This proves that
Gf ≈ S3. The discriminant is−1323 = −3372. Only the subfieldQ[

√
−3] is normal over

Q. The subfieldsQ[ 3
√

7], Q[ζ 3
√

7] Q[ζ2 3
√

7] are not normal overQ. [The discriminant of
X3 − a is−27a2 = −3(3a)2.]

26. The prime7 becomes a square in the first field, but11 does not: (a + b
√

7)2 =
a2 +7b2 +2ab

√
7, which lies inQ only if ab = 0. Hence the rational numbers that become

squares inQ[
√

7] are those that are already squares or lie in7Q×2.

27. (a) See Exercise 3.
(b) LetF = F3[X]/(X2 + 1). Modulo3

X8 − 1 = (X − 1)(X + 1)(X2 + 1)(X2 + X + 2)(X2 + 2X + 2).

Takeα to be a root ofX2 + X + 2.

28. SinceE 6= F , E contains an elementf
g

with the degree off or g > 0. Now

f(T )− f(X)

g(X)
g(T )

is a nonzero polynomial havingX as a root.

29. Use Eisenstein to show thatXp−1 + · · ·+ 1 is irreducible, etc. Done in class.

30. The splitting field isQ[ζ, α] whereζ5 = 1 andα5 = 2. It is generated byσ = (12345)
andτ = (2354), whereσα = ζα andτζ = ζ2. The group has order20. It is not abelian
(becauseQ[α] is not Galois overQ), but it is solvable (its order is< 60).

31. (a) A homomorphismα : R→ R acts as the identity map onZ, hence onQ, and it maps
positive real numbers to positive real numbers, and therefore preserves the order. Hence,
for each real numbera,

{r ∈ Q | a < r} = {r ∈ Q | α(a) < r},

which implies thatα(a) = a.
(b) Choose a transcendence basisA for C over Q. Because it is infinite, there is a

bijectionα : A → A′ from A onto a proper subset. Extendα to an isomorphismQ(A) →
Q(A′), and then extend it to an isomorphismC → C′ whereC′ is the algebraic closure of
Q(A′) in C.

32. The groupF× is cyclic of order15. It has3 elements of order dividing3, 1 element of
order dividing4, 15 elements of order dividing15, and1 element of order dividing17.

33. If E1 andE2 are Galois extensions ofF , thenE1E2 andE1 ∩ E2 are Galois overF ,
and there is an exact sequence

1 −−−→ Gal(E1E2/F ) −−−→ Gal(E1/F )×Gal(E2/F ) −−−→ Gal(E1 ∩ E2/F ) −−−→ 1.
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In this case,E1 ∩ E2 = Q[ζ] whereζ is a primitive cube root of1. The degree is18.

34. OverQ, the splitting field isQ[α, ζ] whereα6 = 5 andζ3 = 1 (because−ζ is then a
primitive 6th root of 1). The degree is12, and the Galois group isD6 (generators(26)(35)
and(123456)).

OverR, the Galois group isC2.

35. Let the coefficients off bea1, . . . , an — they lie in the algebraic closureΩ of F . Let
g(X) be the product of the minimum polynomials overF of the roots off in Ω.

Alternatively, the coefficients will lie in some finite extensionE of F , and we can take
the norm off(X) from E[X] to F [X].

36. If f is separable,[E : F ] = (Gf : 1), which is a subgroup ofSn. Etc..

37.
√

3 +
√

7 will do.

38. The splitting field ofX4 − 2 is E1 = Q[i, α] whereα4 = 2; it has degree8, and Galois
groupD4. The splitting field ofX3 − 5 is E2 = Q[ζ, β]; it has degree6, and Galois group
D3. The Galois group is the product (they could only intersect inQ[

√
3], but

√
3 does not

become a square inE1).

39. The multiplicative group ofF is cyclic of orderq − 1. Hence it contains an element of
order4 if and only if 4|q − 1.

40. Takeα =
√

2 +
√

5 +
√

7.

41. We haveE1 = EH1, which has degreen overF , andE2 = E<1···n>, which has degree
(n− 1)! overF , etc.. This is really a problem in group theory posing as a problem in field
theory.

42. We haveQ[ζ] = Q[i, ζ ′] whereζ ′ is a primitive cube root of1 and±i = ζ3 etc..

43. The splitting field isQ[ζ, 3
√

3], and the Galois group isS3.

44. Use that
(ζ + ζ4)(1 + ζ2) = ζ + ζ4 + ζ3 + ζ

45. (a) is Dedekind’s theorem. (b) is Artin’s lemma 3.4b. (c) is O.K. becauseXp − ap has
a unique root inΩ.

46. The splitting field isQ[i, α] whereα4 = 3, and the Galois group isD4 with generators
(1234) and(13) etc..

47. From Hilbert’s theorem 90, we know that the kernel of the mapN : E× → F× consists
of elements of the formσα

α
. The mapE× → E×, α 7→ σα

α
, has kernelF×. Therefore the

kernel ofN has orderq
m−1
q−1

, and hence its image has orderq − 1. There is a similar proof
for the trace — I don’t know how the examiners expected you to prove it.

48. (a) is false—could be inseparable. (b) is true—couldn’t be inseparable.

49. Apply the Sylow theorem to see that the Galois group has a subgroup of order81. Now
the Fundamental Theorem of Galois theory shows thatF exists.

50. The greatest common divisor of the two polynomials overQ is X2 + X + 1, which
must therefore be the minimum polynomial forθ.
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51. Theorem onp-groups plus the Fundamental Theorem of Galois Theory.

52. It was proved in class thatSp is generated by an element of orderp and a transposition
(4.12). There is only oneF , and it is quadratic overQ.

53. Let L = K[α]. The splitting field of the minimum polynomial ofα has degree at most
d!, and a set withd! elements has at most2d! subsets. [Of course, this bound is much too
high: the subgroups are very special subsets. For example, they all contain1 and they are
invariant undera 7→ a−1.]

54. The Galois group is(Z/5Z)×, which cyclic of order4, generated by2.

(ζ + ζ4) + (ζ2 + ζ3) = −1, (ζ + ζ4)(ζ2 + ζ3) = −1.

(a) Omit.
(b) Certainly, the Galois group is a productC2 × C4.

55. Let a1, . . . , a5 be a transcendence basis forΩ1/Q. Their images are algebraically
independent, therefore they are a maximal algebraically independent subset ofΩ2, and
therefore they form a transcendence basis, etc..

56. C2 × C2.

57. If f(X) were reducible overQ[
√

7], it would have a root in it, but it is irreducible
overQ by Eisenstein’s criterion. The discriminant is−675, which is not a square in anyR,
much lessQ[

√
7].

58. (a) Should beX5−6X4 +3. The Galois group isS5, with generators(12) and(12345)
— it is irreducible (Eisenstein) and (presumably) has exactly2 nonreal roots. (b) It factors
as(X + 1)(X4 + X3 + X2 + X + 1). Hence the splitting field has degree4 overF2, and
the Galois group is cyclic.

59. This is really a theorem in group theory, since the Galois group is a cyclic group of
ordern generated byθ. If n is odd, sayn = 2m + 1, thenα = θm does.

60. It has order20, generators(12345) and(2354).

61. TakeK1 andK2 to be the fields corresponding to the Sylow5 and Sylow43 subgroups.
Note that of the possible numbers1, 6, 11, 16, 21, ... of Sylow 5-subgroups, only1 divides
43. There are1, 44, 87, ... subgroups of ....

62. See Exercise 14.

63. The groupF× is cyclic of order80; hence80, 1, 8.

64. It’s D6, with generators(26)(35) and (123456). The polynomial is irreducible by
Eisenstein’s criterion, and its splitting field isQ[α, ζ] whereζ 6= 1 is a cube root of1.

65. Example 5.5.

66. Omit.

67. It’s irreducible by Eisenstein. Its derivative is5X4−5p4, which has the rootsX = ±p.
These are the max and mins,X = p gives negative;X = −p gives positive. Hence the
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graph crosses thex-axis3 times and so there are2 imaginary roots. Hence the Galois group
is S5.

68. Its roots are primitive8th roots of1. It splits completely inF25. (a)(X2 + 2)(X2 + 3).

69. ρ(α)ρ(α) = q2, andρ(α)ρ( q2

α
) = q2. Henceρ( q2

α
) is the complex conjugate ofρ(α).

Hence the automorphism induced by complex conjugation is independent of the embedding
of Q[α] into C.

70. The argument that proves the Fundamental Theorem of Algebra, shows that its Galois
group is ap-group. LetE be the splitting field ofg(X), and letH be the Sylowp-subgroup.
ThenEH = F , and so the Galois group is ap-group.

71. (a)C2 × C2 andS3. (b) No. (c). 1

72. Omit.

73. Omit.

74. 1024 = 210. Wantσx ·x = 1, i.e.,Nx = 1. They are the elements of the formσx
x

; have

1 −−−→ k× −−−→ K× x 7→σx
x−−−→ K×.

Hence the number is211/210 = 2.

75. Pretty standard. False; true.

76. Omit.

77. Similar to a previous problem.

78. Omit.

79. This is really a group theory problem disguised as a field theory problem.

80. (a) Prove it’s irreducible by apply Eisenstein tof(X + 1). (b) See example worked out
in class.

81. Its D4, with generators(1234) and(12).

82. Omit.
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C Two-hour Examination

1. (a) Letσ be an automorphism of a fieldE. If σ4 = 1 and

σ(α) + σ3(α) = α + σ2(α) all α ∈ E,

show thatσ2 = 1.
(b) Letp be a prime number and leta, b be rational numbers such thata2 + pb2 = 1. Show
that there exist rational numbersc, d such thata = c2+pd2

c2−pd2 andb = 2cd
c2−pd2 .

2. Letf(X) be an irreducible polynomial of degree4 in Q[X], and letg(X) be the resolvent
cubic off . What is the relation between the Galois group off and that ofg? Find the Galois
group off if

(a) g(X) = X3 − 3X + 1;
(b) g(X) = X3 + 3X + 1.

3. (a) How many monic irreducible factors doesX255−1 ∈ F2[X] have, and what are their
degrees.
(b) How many monic irreducible factors doesX255 − 1 ∈ Q[X] have, and what are their
degrees?

4. Let E be the splitting field of(X5 − 3)(X5 − 7) ∈ Q[X]. What is the degree ofE over
Q? How many proper subfields ofE are there that are not contained in the splitting fields
of bothX5 − 3 andX5 − 7?
[You may assume that7 is not a5th power in the splitting field ofX5 − 3.]

5. Consider an extensionΩ ⊃ F of fields. Definea ∈ Ω to beF -constructibleif it is
contained in a field of the form

F [
√

a1, . . . ,
√

an], ai ∈ F [
√

a1, . . . ,
√

ai−1].

AssumeΩ is a finite Galois extension ofF and construct a fieldE, F ⊂ E ⊂ Ω, such that
everya ∈ Ω is E-constructible andE is minimal with this property.

6. Let Ω be an extension field of a fieldF . Show that everyF -homomorphismΩ → Ω is
an isomorphism provided:

(a) Ω is algebraically closed, and
(b) Ω has finite transcendence degree overF .

Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

You should prove all answers. You may use results proved in class or in the notes, but you
should indicate clearly what you are using.

Possibly useful facts:The discriminant ofX3 +aX + b is−4a3−27b2 and28−1 = 255 =
3× 5× 17.
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Solutions

1. (a) Letσ be an automorphism of a fieldE. If σ4 = 1 and

σ(α) + σ3(α) = α + σ2(α) all α ∈ E,

show thatσ2 = 1.
If σ2 6= 1, then1, σ, σ2, σ3 are distinct automorphisms ofE, and hence are linearly

independent (Dedekind 5.14) — contradiction. [Ifσ2 = 1, then the condition becomes
2σ = 2, so eitherσ = 1 or the characteristic is2 (or both).]
(b) Letp be a prime number and leta, b be rational numbers such thata2 + pb2 = 1. Show
that there exist rational numbersc, d such thata = c2+pd2

c2−pd2 andb = 2cd
c2−pd2 .

Apply Hilbert’s Theorem 90 toQ[
√

p] (or Q[
√
−p], depending how you wish to correct

the sign).

2. Letf(X) be an irreducible polynomial of degree4 in Q[X], and letg(X) be the resolvent
cubic off . What is the relation between the Galois group off and that ofg? Find the Galois
group off if

(a) g(X) = X3 − 3X + 1;
(b) g(X) = X3 + 3X + 1.

We haveGg = Gf/Gf ∩ V , whereV = {1, (12)(34), . . .}. The two cubic polynomials
are irreducible, because their only possible roots are±1. From their discriminants, one
finds that the first has Galois groupA3 and the secondS3. Becausef(X) is irreducible,
4|(Gf : 1) and it follows thatGf = A4 andS4 in the two cases.

3. (a) How many monic irreducible factors doesX255−1 ∈ F2[X] have, and what are their
degrees?

Its roots are the nonzero elements ofF28 , which has subfieldsF24⊃ F22⊃ F2. There are
256 − 16 elements not inF16, and their minimum polynomials all have degree8. Hence
there are30 factors of degree8, 3 of degree4, and1 each of degrees2 and1.
(b) How many monic irreducible factors doesX255 − 1 ∈ Q[X] have, and what are their
degrees?

Obviously,X255 − 1 =
∏

d|255 Φd = Φ1Φ3Φ5Φ15 · · ·Φ255, and we showed in class that
theΦd are irreducible. They have degrees1, 2, 4, 8, 16, 32, 64, 128.

4. Let E be the splitting field of(X5 − 3)(X5 − 7) ∈ Q[X]. What is the degree ofE over
Q? How many proper subfields ofE are there that are not contained in the splitting fields
of bothX5 − 3 andX5 − 7?

The splitting field ofX5 − 3 is Q[ζ, α], which has degree5 overQ[ζ] and20 overQ.
The Galois group ofX5 − 7 overQ[ζ, α] is (by ...) a subgroup of a cyclic group of order
5, and hence has order1 or 5. Since7 is not a5th power inQ[ζ, α], it must be5. Thus
[E : Q] = 100, and

G = Gal(E/Q) = (C5 × C5) o C4.

We want the nontrivial subgroups ofG not containingC5 × C5. The subgroups of order
5 of C5 × C5 are lines in(F5)

2, and henceC5 × C5 has6 + 1 = 7 proper subgroups. All
are normal inG. Each subgroup ofC5 × C5 is of the formH ∩ (C5 × C5) for exactly
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3 subgroupsH of G corresponding to the three possible images inG/(C5 × C5) = C4.
Hence we have21 subgroups ofG not containingC5×C5, and20 nontrivial ones. Typical
fields:Q[α], Q[α, cos 2π

5
], Q[α, ζ].

[You may assume that7 is not a5th power in the splitting field ofX5 − 3.]

5. Consider an extensionΩ ⊃ F of fields. Defineα ∈ Ω to beF -constructibleif it is
contained in a field of the form

F [
√

a1, . . . ,
√

an], ai ∈ F [
√

a1, . . . ,
√

ai−1].

AssumeΩ is a finite Galois extension ofF and construct a fieldE, F ⊂ E ⊂ Ω, such that
everya ∈ Ω is E-constructible andE is minimal with this property.

SupposeE has the required property. From the primitive element theorem, we know
Ω = E[a] for somea. Now a E-constructible=⇒ [Ω : E] is a power of2. TakeE = ΩH ,
whereH is the Sylow2-subgroup ofGal(Ω/F ).

6. Let Ω be an extension field of a fieldF . Show that everyF -homomorphismΩ → Ω is
an isomorphism provided:

(a) Ω is algebraically closed, and
(b) Ω has finite transcendence degree overF .

Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

Let A be a transcendence basis forΩ/F . Becauseσ : Ω → Ω is injective,σ(A) is
algebraically independent overF , and hence (because it has the right number of elements)
is a transcendence basis forΩ/F . Now F [σA] ⊂ σΩ ⊂ Ω. BecauseΩ is algebraic over
F [σA] andσΩ is algebraically closed, the two are equal. Neither condition can be dropped.
E.g.,C(X)→ C(X), X 7→ X2. E.g.,Ω = the algebraic closure ofC(X1, X2, X3, . . .), and
consider an extension of the mapX1 7→ X2, X2 7→ X3, . . ..
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Artin’s, 30
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split, 23
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